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1 Project Overview 

1.1 Project Description 

The Safety Policy Department (SPD) of the California Public Utilities Commission (CPUC) has engaged 

Level 4 as an expert contractor to provide complex and technical expertise on risk tolerance and simple 

optimization. This report will present Level 4’s views on the importance of risk tolerance for making risk-

based decisions, and how to use simple optimization techniques to improve the quality and transparency of 

risk mitigation selection. Level 4 will provide SPD with a set of recommendations on how the Risk-Based 

Decision-Making Framework (RDF) can be modified for risk tolerance and simple optimization. 

1.2 Purpose 

This contract addresses the requirements of California Senate Bill (SB) 884 to develop, administer, and 

enforce new standards for an expedited electric utility distribution infrastructure program. Critical efforts 

include refining the RDF to allow for an improved decision support process.  

1.3 Approach 

Level 4 will discuss the concepts of risk tolerance and simple optimization and how they relate to risk-based 

decision-making. Level 4 will  

• Review the scientific literature and discuss risk tolerance and simple optimization using numerical 

examples and visualizations. 

• Build a case for incorporating risk tolerance and simple optimization techniques in selecting 

mitigations within the RDF, with potential application for SB 884 and wildfire risk management in 

general. 

• Develop recommendations for how to modify the RDF for risk tolerance and simple optimization, 

and how to transition to the modified RDF. 

As much as possible, the numerical examples and visualizations will be based on wildfire risk and other risks 

faced by CPUC-regulated utilities, such as (but not necessarily limited to) cyber risk and hydro-power risk. 
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2 Executive Summary 

2.1 Overview 

This paper will explore the special relationship between a probabilistic view of risk, risk tolerance, and 

optimization. Our goal is to provide more technical insight into each piece and to suggest practical guidance 

on incorporating them more fully into the RDF 

A probabilistic understanding of risk, risk tolerance, and optimizing risk-based decisions are three legs of a 

finely balanced stool. Building a case for risk reduction that focuses on any two while ignoring the third is at 

best a rickety proposition. 

Risk is the chance of something bad happening. Embedded in those deceptively simple words are the laws 

of probability behind the word “chance,” and the subjectivity behind the perception of “bad.” The over-

arching theme of this paper is that risk cannot be represented as a single number and must instead be 

represented by probability distributions. A companion theme is that risk “is in the eye of the beholder,” and 

that subjectivity plays a crucial role in risk-based decisions.  

Risk tolerance is a touchstone for deciding whether to mitigate a risk or to accept it. It is probabilistic and 

individualistic—risk tolerance is “shaped” by how an individual views small chances of very bad outcomes. 

Without an explicitly declared risk tolerance, evaluators can’t assess whether risk mitigation objectives are 

being achieved. 

The formal study of risk and risk tolerance emerged in the 16th century with the mathematician Gerolamo 

Cardano, who wrote the “Book on Chance and Games.” The study was advanced in the 17th century 

through the correspondence between the great mathematicians Blaise Pascal and Pierre de Fermat.1 

The study of risk and risk tolerance flourished in the 18th century. In 1738, Swiss mathematician and 

physicist Daniel Bernoulli presented his “Exposition of a new theory on the measurement of risk” to the St. 

Petersburg Academy. In what is now known as the St. Petersburg Paradox, Bernoulli showed how rational, 

individuals would not always be willing to pay the fair (or “expected value” (EV)) of a bet, especially if there 

was the possibility of large losses.2 The St. Petersburg paradox led to the development of utility theory in 

economics, and the understanding that people will behave differently when facing risk depending on many 

factors, including wealth, income, age, gender, and past experience.3 

 

1 Peter L. Bernstein, “Against the Gods: The Remarkable Story of Risk,” chaps. 4 and 6. (John Wiley & Sons, 1996). 

2 “Risk and uncertainty I: St. Petersburg paradox,” Policonomics, 2024, https://policonomics.com/lp-risk-and-uncertainty1-saint-

petersburg-paradox/  

3 Thomas Dohmen, Armin Falk, David Huffman, Uwe Sunde, Jurgen Schupp, Gert G. Wagner, “Individual Risk Attitudes: 

Measurement, Determinants, and Behavioral Consequences,” Journal of the European Economic Association 22, no. 3 (June 2011): 522-

 

https://policonomics.com/lp-risk-and-uncertainty1-saint-petersburg-paradox/
https://policonomics.com/lp-risk-and-uncertainty1-saint-petersburg-paradox/
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A decision that makes sense for a person (or an organization) with a high-risk tolerance,4 due to significant 

financial reserves, might be catastrophically irresponsible for another. Assessing whether that decision is 

sensible or catastrophic is impossible without knowing the underlying risk tolerance. Risk and risk tolerance 

will be covered in Chapter 4.  

Optimization is a quantitative technique for determining the best choice, subject to conditions and 

constraints. It can be probabilistic (called stochastic optimization). For mitigations selection, optimization is 

superior to straight ranking when there are interrelationships between them, such as mutual exclusivity, 

synergies, or diminishing returns.  

A simple optimization approach is based on portfolios of mitigations and draws on the experience of 

the finance and insurance industries.5 Harry Markowitz, the Nobel laureate in economics and founder of 

Modern Portfolio Theory (MPT), made the fundamental insight that the performance of an individual asset 

in a portfolio is not as important as the performance of the entire portfolio. While Markowitz was focused 

on portfolios of financial stocks, the theory also holds for portfolios of other assets or projects, such as risk 

mitigations.  

Different portfolios of mitigations can be plotted based on mitigation impact versus cost, which will reveal 

an “efficient frontier” of optimal portfolios. A portfolio on the efficient frontier achieves the highest 

amount of risk reduction for its level of expense—other portfolios may achieve higher risk reduction, but at 

higher cost. Since an efficient frontier normally contains multiple portfolios, the final selection of a single 

portfolio depends on budget and other considerations, such as available resources, safety versus reliability 

impact, the level of risk at different probabilities—and ultimately risk tolerance. We have come full circle. 

Portfolios of mitigations and simple optimization will be covered in more detail in Chapter 5. 

2.2 Key Findings and Recommendations 

Level 4 recognizes that the RDF is a journey, and noteworthy progress has been made. Many of the topics 

covered in this report have been raised and discussed in various CPUC decisions, but realistically deferred 

until future phases. Level 4 believes that the capabilities of the utilities have matured to the point where 

implementation can be accelerated. 

Level 4 recommends that CPUC incorporate risk tolerance into the RDF and move toward a more 

quantitative optimization approach that reflects probabilistic concepts such as tail risk for evaluating and 

selecting risk mitigations.  

 
550. 

https://www.swarthmore.edu/sites/default/files/assets/documents/user_profiles/dhuffma1/Individual_risk_attitudes_JEEA.p

df  

4 We will define risk tolerance more formally later; for now, think of it as willingness to accept the possibility of large losses. 

5 Ann Behan, “Harry Markowitz: Creator of the Modern Portfolio Theory.” 2024.  

https://www.investopedia.com/terms/h/harrymarkowitz.asp  

https://www.swarthmore.edu/sites/default/files/assets/documents/user_profiles/dhuffma1/Individual_risk_attitudes_JEEA.pdf
https://www.swarthmore.edu/sites/default/files/assets/documents/user_profiles/dhuffma1/Individual_risk_attitudes_JEEA.pdf
https://www.investopedia.com/terms/h/harrymarkowitz.asp
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A summary of Level 4’s recommendations is presented in Figure 2-1. 

 

Recommendation Description 

(R1): Use of probability distributions.  Probability distributions describe the range and chance that a set of 
outcomes occurs within datasets and model results. Risk models 
must use probability distributions as inputs and return probability 
distributions as outputs. 

(R2): Include and define tail risk as a 
risk measure.  

 

In addition to using average risk, defined as the average of the 
probability distribution of risk, tail risk should be formally added 
for risk evaluation. The measure of tail risk should be tail average 
above a percentile (the percentile to be determined by the 
Commission in consultation with stakeholders). Tail average is 
preferred over other measures because it captures the entire tail of 
the distribution, is stable, and can be optimized using linear 
programming or other methods. 

(R3): Evaluation based on portfolios of 
mitigations.  

Risk reduction evaluation should be based on portfolios of risk 
mitigations to account for interrelationships between mitigations. 
Portfolio selection is well-suited to optimization (see R4). 

(R4): Portfolio selection based on simple 
optimization instead of ranking.  

Optimization ensures choosing the best portfolio of mitigations 
given the objective and constraints. It can, however, be a complex, 
computationally intensive, and time-consuming process. There are 
ways to simplify the optimization process such as limiting the 
number of optimization scenarios and choosing objectives that can 
be optimized using linear programming, which is computationally 
efficient and speedy compared to non-linear methods. 

(R5): Calculation of risk tolerance.  Risk tolerance should be modeled as an exceedance curve and 
calculated by applying the risk neutral or risk averse scaling 
function to a constant risk exceedance curve.  

(R6): Establish risk tolerance 
representing the residents of California.  

Risk tolerance is the benchmark that determines whether utility 
risk levels are acceptable or not. Developing a set of acceptable risk 
levels that represents the risk tolerance of the residents of 
California requires an inclusive process, which should begin as 
soon as possible.  

Figure 2-1. Summary of recommendations. 

Detailed recommendations including proposed language changes to the RDF are presented in Chapter 7. 



I NC O RP O RAT IN G  R I SK  T O L ERA NC E  AN D  S I MPL E  O PT I M I ZAT I ON  IN T O T H E  RD F  

 

L E V E L  4  VE NT UR E S ,  I NC ,                    F INA L  R E PO R T  1 0/ 2 0 2 4  1 1  

3 Background and Current State 

3.1 Risk Tolerance and Simple Optimization in the RDF 

In December 2014, the CPUC published Decision (D.)14-12-025, the “Decision Incorporating a Risk-Based 

Decision-Making Framework into the Rate Case Plan and Modifying Appendix A of Decision 07-07-004.” 

The decision was in response to the 2010 natural gas explosion and fire in San Bruno and followed the 

Commission Rulemaking (R.)11-02-019 and several gas safety bills. The legislation required the Commission 

to “develop formal procedures to consider safety in a rate case application by an electrical corporation or 

gas corporation.”6 

D.14-12-025 launched two new procedures, the filing of a Safety Model Assessment Proceeding (S-MAP), 

and a Risk Assessment Mitigation Phase (RAMP). The decision acknowledges that the Commission “need(s) 

to require testimony in the General Rate Cases (GRCs)…an assessment of its risk tolerance, identifying 

areas of low risk and high risk…”7  

In August 2016, the Commission published D.16-08-018, the “Interim Decision Adopting the Multi-

Attribute Approach (or Utility Equivalent Features) and Directing Utilities to Take Steps Toward a More 

Uniform Risk Management Framework.” This decision explores risk tolerance in detail and provides a 

definition: “maximum amount of residual risk that an entity or its stakeholders are willing to accept after 

application of risk control or mitigation.”8  

The decision finds that there are problems with the utilities’ models that preclude them from implementing 

risk reduction and risk mitigation strategies consistent with D.14-12-025, including not having an explicit 

risk tolerance and no optimization of the portfolio of risk mitigation activities.9 

There was broad agreement between the Commission, the utilities, and the intervenors that some form of 

risk tolerance is required. The Joint Utilities acknowledge the need for a risk tolerance framework.10 The 

intervenors were also in general agreement about the importance of risk tolerance.11 

In contemplating potential future steps, the decision discusses the As Low as Reasonably Practicable 

(ALARP) framework.12 Commission staff originally published a whitepaper on ALARP as part of Workshop 

 

6 CPUC decision D.14-12-025, page 4, footnote 3. 

7 CPUC decision D.14-12-025, page 5. 

8 CPUC decision D.16-08-018, page 25. 

9 CPUC decision D.16-08-018, page 164. 

10 CPUC decision D.16-08-018, page 47. 

11 CPUC decision D.16-08-018, pages 70-80. 

12 CPUC decision D.16-08-018, page 62. 
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#4 of Phase 1 of the S-MAP Proceeding in December 2015.13 ALARP combines risk tolerance with a three-

tiered optimization process and is focused on safety risk. It has been enshrined in the United Kingdom case 

law for the regulation of health and safety since 1949 and is also applied in other countries including 

Australia, Norway, and the Netherlands.14 In the U.S., the Army Corps of Engineers has used it,15 as has the 

nuclear radiation industry.16  

It was determined that ALARP may be a desirable end state but would not be possible to implement at the 

time it was discussed. There are other ways to incorporate risk tolerance and optimization short of full 

implementation of ALARP; even so, the decision determined that “the Commission should adopt explicit 

risk tolerance standards over time, but not before laying the groundwork in the development of probabilistic 

risk analysis.”17 During Phase 2 of the S-MAP Proceeding, developing a risk tolerance framework and 

increasing the application of optimization were included among eight suggested long-term goals.18 

Over the next several years, risk tolerance and optimization remained in the conversation. CPUC D.18-12-

014, the “Phase Two Decision Adopting Safety Model Assessment Proceeding (S-MAP) Settlement 

Agreement with Modifications,” issued in December 2018, stated that the “settlement agreement does not 

preclude other long-term goals of the Commission, such as ‘optimization’ and ‘explicit risk tolerance 

standards.’”19 It affirms that ALARP remains a priority topic.20 

In the Risk-based Decision-making Framework Proceeding (R.20-07-013), the CPUC decision D.22-12-027, 

“Phase II Decision Adopting Modifications to the Risk-Based Decision-Making Framework Adopted in 

Decision 18-12-014 and Directing Environmental and Social Justice Pilots,” issued in December 2022, 

 

13 Safety and Enforcement Division Staff White Paper on As Low as Reasonably Practicable (ALARP) Risk-informed Decision Framework 

Applied to Public Utility Safety. California Public Utilities Commission. (2015, December 24). 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M157/K359/157359431.PDF 

14 Noor Quddus, Denis Su-Feher, Christopher Gordon, Jyoti Sharma, and Troy O’Brien. “Risk Acceptance Criteria: Overview of 

ALARP and Similar Methodologies as Practiced Worldwide.” Mary Kay O’Connor Process Safety Center, Texas A&M 

Engineering Experiment Station, 2020. https://psc.tamu.edu/wp-content/uploads/sites/2/2020/08/ALARP-Final-Paper-

Publishing.pdf  

15 Isabella Dam Safety Modification Study, U.S. Army Corps of Engineers Response to Independent External Peer Review, 

(October 2012): 5. 

https://www.spk.usace.army.mil/Portals/12/documents/civil_works/Isabella/Final%20Agency%20Response%20to%20IEPR%

20-%20Isabella%20Dam%20%282%29.pdf  

16 Regulatory Guide 8.10, U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research, August 2016 (called 

ALARA, which is similar to ALARP). https://www.nrc.gov/docs/ML1610/ML16105A136.pdf  

17 CPUC decision D.16-08-018, page 192. 

18 CPUC decision D.16-08-018, page 175. 

19 CPUC decision D.18-12-014, page 41. 

20 CPUC decision D.18-12-014, page 55. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M157/K359/157359431.PDF
https://psc.tamu.edu/wp-content/uploads/sites/2/2020/08/ALARP-Final-Paper-Publishing.pdf
https://psc.tamu.edu/wp-content/uploads/sites/2/2020/08/ALARP-Final-Paper-Publishing.pdf
https://www.spk.usace.army.mil/Portals/12/documents/civil_works/Isabella/Final%20Agency%20Response%20to%20IEPR%20-%20Isabella%20Dam%20%282%29.pdf
https://www.spk.usace.army.mil/Portals/12/documents/civil_works/Isabella/Final%20Agency%20Response%20to%20IEPR%20-%20Isabella%20Dam%20%282%29.pdf
https://www.nrc.gov/docs/ML1610/ML16105A136.pdf
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authorized technical working groups (TWGs) to propose recommendations regarding the application of risk 

tolerance.21 

In September 2024, the assigned commissioner issued the Phase 4 Scoping Memo and Ruling as part of the  

RDF Proceeding.22 Phase 4 priorities include risk tolerance standards and methodology, addressing overall 

residual risk, and mitigation selection optimization. The memo states that “a standard method is needed to 

integrate risk tolerance into the RDF and inform future RAMP and GRC filings” and “we are concerned 

that a risk tolerance goal that is too high or too low will yield suboptimal outcomes for ratepayer safety or 

ratepayer costs, respectively.”23 The memo further states that “the Commission should explore basic risk 

mitigation optimization techniques by requiring the utilities to identify and quantify the key constraints 

affecting their selection of mitigation options for implementation.”24 

3.2 Current State of Risk Tolerance and Simple 

Optimization 

Based on its reviews, Level 4 has observed that risk tolerance and optimization are missing in utilities’ 

RAMPs and Wildfire Mitigation Plans (WMPs). Level 4 further observes that these omissions detract from 

the RAMPs and WMPs consistent with the Commission decisions cited above. Specifically, 

• In the RAMPs filed between 2020 and 2022, the utilities were in the initial stages of developing their 

risk mitigation modeling programs, and there is little mention of risk tolerance or optimization. San 

Diego Gas & Electric (SDG&E) is an exception to some extent, frequently referring to portfolios of 

mitigations and relating portfolio selection to Risk Spend Efficiency (RSE), though this falls short of 

optimization. 

• In the 2022 and 2023 WMPs, none of the utilities adequately explained why the level of wildfire 

mitigation had been chosen. Why was the level of post-mitigation wildfire risk deemed satisfactory? 

This most basic question cannot be answered without acknowledging risk tolerance. 

• In the 2022 and 2023 WMPs, none of the utilities adequately described how wildfire mitigations were 

chosen. While analytics were performed and RSE curves were constructed, it was unclear how these 

were used in mitigation selection; in fact, the selections appeared to be made mostly based on 

subject matter expert opinion.  

Level 4 agrees with Commission staff that by not providing an “explicit specification of risk tolerance, the 

utilities are handicapping the ability of other stakeholders to make an informed decision as to whether the 

utilities’ rate case proposals would have the desired risk reduction effect in relation to the desired level of 

 

21 CPUC decision D.22-12-027, page 29. 

22 See https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M539/K999/539999025.PDF  

23 Ibid., pages 3-4. 

24 Ibid., page 5. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M539/K999/539999025.PDF
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risk tolerance…The utilities would in effect be asking the stakeholders to accept in blind faith that the 

proposed programs and projects are necessary and sufficient…to mitigate the risk down to a level that the 

utilities can tolerate, whatever that level is.”25 

Level 4 also agrees with Commission staff that “there is no optimization of the portfolio of risk mitigation 

activities. None of the utilities have a way to optimize their portfolio in a mathematically rigorous 

sense…Programs and projects are prioritized but not optimized…Inherent in risk management is the 

unavoidable fact of limited resources and other constraints. Without resource constraints, an operator could 

simply apply an infinite amount of an infinite number of risk mitigation activities and the risk would be 

driven to zero. Clearly, this is a reduction of the argument to an absurdity. Therefore, risk management 

always assumes recognition of some constraints…optimization is always tied to risk tolerance. These 

concepts are all tied together (emphasis added).”26 

We note that the very next sentence in the decision states that most parties agreed with the above statement 

and considered it a long-term priority. That was over seven years ago, and little if any progress has been 

made in incorporating risk tolerance or implementing optimization. In the following chapters, Level 4 will 

develop the case for moving ahead with risk tolerance and simple optimization, present tools and techniques 

for implementation, and suggest timing, pacing, and sequencing considerations.  

 

25 CPUC decision D.16-08-018, page 68. 

26 CPUC decision D.16-08-018, page 98. 
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4 Risk and Risk Tolerance 

4.1 Risk is in the Eye of the Beholder 
 
A Google search of “risk definition” results in hundreds, probably thousands of alternatives. We like the 
simple and direct “the chance of something bad happening” from the Cambridge Online Dictionary.27 The 
CPUC definition of risk is similar, with additional detail “The potential for the occurrence of an event that 
would be desirable to avoid, often expressed in terms of a combination of various Outcomes of an adverse 
event and their associated Probabilities.”28 
 
In our simple definition, “chance” means a probability from 0% to 100%, and “bad” is a subjective 
interpretation of an outcome. The following parable will illustrate the probabilistic and subjective elements 
of risk and the interplay between them. We will use the Factor Analysis of Information Risk (FAIR) 
ontology for expressing risk, where risk equals the likelihood of risk event (LoRE) multiplied by the 
consequence of risk event (CoRE).29 
 
Three venturers in a large metropolitan area approach a major bridge. Each venturer needs to reach 
their destination across the bridge on time or will lose something of value. Unfortunately, there was an 
accident on the bridge and traffic was backed up for miles. The three venturers happen to be near a heliport 
and have the option to take a helicopter into the city, for $150. 
 
Venturer 1 (V1) spent $100 on tickets to a ballgame in the city. V1 sees the world in black-and-white terms 
and is certain that the traffic jam will result in missing the entire game. The risk of loss, as perceived by V1, 
is 100% likelihood x $100 consequence = $100. 
 
Venturer 2 (V2) has several client appointments in the city and would lose fee income if late. V2 assesses 
there is a good chance that the traffic will clear up quickly based on years of commuting experience, 
confirmed by projections from a GPS app. V2 estimates there is a 50% chance of making all appointments 
on time, and a 50% chance of missing one appointment and $200 in income. The risk of loss, as perceived 
by V2, is 50% likelihood x $0 consequence + 50% likelihood x $200 consequence = $100. 
 
Venturer 3 (V3) has become increasingly alarmed about the possibility of a cyberattack on local banks and 
depositors being robbed of their savings. V3 is concerned that because of the traffic, there is a 10% chance 
based on gut feel of not making it to the bank before the attack and will lose $1,000 in savings. The risk of 
loss as perceived by V3 is 90% likelihood x $0 consequence + 10% likelihood x $1,000 consequence = $100. 
 
The three venturers represent three archetypes for perceiving risk. V1 perceives risk deterministically, with 
no sense of probabilities. V2 perceives risk probabilistically and assesses it based on data and experience. V3 

 

27 https://dictionary.cambridge.org/us/dictionary/english/risk  

28 CPUC R20-07-013, Appendix A, page A-5. 

29 See “The FAIR Standard,” Risk Lens, https://www.risklens.com/cyber-risk-quantification/the-fair-standard  

https://dictionary.cambridge.org/us/dictionary/english/risk
https://www.risklens.com/cyber-risk-quantification/the-fair-standard
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also perceives risk probabilistically but assesses it based on belief and instinct. The three perceptions of risk 
can be visualized in Figure 4-1. 
 

 

Figure 4-1. Three perspectives - the subjective nature of risk 

Though the three venturers assess the chances of something bad happening differently, for each the 
expected loss is $100, despite the very different “shape” of each risk assessment, as illustrated in Figure 4-1.  
 
Does this mean that all risk assessments are correct, or conversely, all are wrong? While there is no such 
thing as a perfect risk assessment, some are better than others. Cognitive biases and inexperience in 
estimating likelihoods and consequences can lead to systematic errors in risk assessment. Techniques 
such as calibration training have been shown to improve the quality of risk assessments.30 
 
More complete information and better models can also improve risk assessments, and if individuals are 
using the same information and the same models, we can expect the risk assessments to converge. This 
is not necessarily a good thing, since it can lead to group think.31  The key point is that risk assessments 
are subjective, and even the best of them may differ.  

 
Back to the three venturers. EV theory suggests that they should reject the price of the helicopter to 
mitigate the risk for $150, but their decision is more complicated. How will the venturers decide? To answer 
these the next two sections will introduce risk tolerance and related concepts.  
 

4.2 Risk Tolerance (and Risk Attitude and Risk Scaling) 

Before we delve into risk tolerance, risk attitude, and risk scaling, it is helpful to have a background on the 

history of risk and efforts to quantify it. 

 

30 For a quick overview, https://medium.com/@wadedeji/the-failure-of-risk-management-62aac1f5dd6d; for a summary of 

cognitive bias impact on assessing probabilities, https://www.researchgate.net/profile/Michael-Lindell-

2/publication/278671139_Chapter_18_Judgment_and_Decision_Making/links/56845f6308ae1e63f1f1cdb4/Chapter-18-

Judgment-and-Decision-Making.pdf; for improving risk assessment via calibration, Douglas W. Hubbard, How to Measure Anything, 

3rd ed. (Wiley, 2014). Chapter 5. 

31 Based on criteria for the Wisdom of Crowds, https://www.crowdwisdomproject.org/the-wisdom-of-crowds/  

https://medium.com/@wadedeji/the-failure-of-risk-management-62aac1f5dd6d
https://www.researchgate.net/profile/Michael-Lindell-2/publication/278671139_Chapter_18_Judgment_and_Decision_Making/links/56845f6308ae1e63f1f1cdb4/Chapter-18-Judgment-and-Decision-Making.pdf
https://www.researchgate.net/profile/Michael-Lindell-2/publication/278671139_Chapter_18_Judgment_and_Decision_Making/links/56845f6308ae1e63f1f1cdb4/Chapter-18-Judgment-and-Decision-Making.pdf
https://www.researchgate.net/profile/Michael-Lindell-2/publication/278671139_Chapter_18_Judgment_and_Decision_Making/links/56845f6308ae1e63f1f1cdb4/Chapter-18-Judgment-and-Decision-Making.pdf
https://www.crowdwisdomproject.org/the-wisdom-of-crowds/


I NC O RP O RAT IN G  R I SK  T O L ERA NC E  AN D  S I MPL E  O PT I M I ZAT I ON  IN T O T H E  RD F  

 

L E V E L  4  VE NT UR E S ,  I NC ,                    F INA L  R E PO R T  1 0/ 2 0 2 4  1 7  

4.2.1 A Brief Review of the History of Quantifying and Modeling Risk 

The Italian mathematician Gerolamo Cardano’s (1501-1576) “Book on Games of Chance,” written in 1564 

but not published until 1663, is considered the first systematic treatment of probability. Cardano used dice 

to illustrate basic concepts of probability and understood that the odds could be defined as the number of 

positive outcomes divided by the number of negative outcomes.32  

The great French mathematicians Blaise Pascal (1623-1662) and Pierre de Fermat (1601-1665) never met in 

person and only corresponded for a short time in 1654, but that correspondence created the foundation for 

probability theory. The two discussed a puzzle called “the problem of points,” proposed by an Italian monk 

named Pacioli in 1494. They worked out probabilistic calculations (Pascal using his famous “Pascal’s 

Triangle”), performed combinatorial analyses, and established the principles of EV analysis and risk 

assessment.33 

The mathematical study of probability flourished in the 18th century. In 1738, Swiss mathematician and 

physicist Daniel Bernoulli (1700-1782) presented a paradox that was first published by his cousin Nicolaus 

in 1713 to the St. Petersburg Academy. The paradox, which became known as the “St. Petersburg Paradox” 

imagines a game where the house flips a coin and pays out $1 if the first trial is heads and doubles the 

amount for each trial of tails thereafter, with the game stopping at the first heads. In theory, the EV is 

infinite—and yet most people are only willing to pay $1 to $2 to play. 

Bernoulli’s work led to the development of the expected utility theory where decisions are based on utility as 

opposed to monetary value, the diminishing marginal utility of wealth, and ultimately the concept of risk 

attitude and risk aversion.34 Expected utility theory (not to be confused with public utilities regulated by the 

CPUC) refers to the idea that an individual’s assessment of worth may not correspond with monetary value. 

Think of utility as meaning “usefulness.” Closely related is the idea of diminishing marginal utility, which 

states that an extra $100 is worth less to a millionaire than to a college student. Another form of diminishing 

marginal utility is that for many people the pain of losing $100 is worse than the joy of winning $100, which 

is known as risk aversion.35 

In the 20th century, fields such as behavioral economics have furthered the study of attitudes toward risk. 

Studies have shown that females are more risk averse, people become more risk averse as they age, and risk 

aversion increases for parents with more children. On the other hand, tall people are more risk-seeking, as 

 

32 Victor. J. Katz, A History of Mathematics: An Introduction, 3rd ed. (Boston: Pearson Education, 2009). 

33 Adrienne E. Lazes, “Pascal and Fermat: Religion, Probability, and Other Mathematical Discoveries,” (Skidmore College, 2016). 

https://creativematter.skidmore.edu/cgi/viewcontent.cgi?article=1119&context=mals_stu_schol  

34 Benjamin Y. Hayden and Michael L. Platt, “The Mean, the Median, and the St. Petersburg Paradox,” NIH (June 1, 2009). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811154/pdf/nihms422969.pdf  

35 The terms risk aversion, risk-seeking, and risk-neutral will be defined and discussed in Section 4.2.2. 

https://creativematter.skidmore.edu/cgi/viewcontent.cgi?article=1119&context=mals_stu_schol
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811154/pdf/nihms422969.pdf
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are people with highly educated parents, and those reporting high life satisfaction. Risk-seeking increases 

with wealth.36 

Individuals have different perceptions and attitudes toward risk as in the three wanderer’s parable above, 

and so do businesses, public utilities, and government agencies. Society is the collection of all these groups, 

whose views on risk often conflict. As a result, organizations attempting to evaluate risk on society's behalf 

may have a different perspective on risk and risk tolerance.37 

The study of risk combines mathematics, statistics, decision science, sociology, and psychology (among 

other disciplines). We will draw from these disciplines in our discussion of quantifying risk under 

uncertainty, risk tolerance, and risk-based decision-making. 

4.2.2 Defining and Applying Risk Tolerance (and Risk Attitude and 

Risk Scaling) to Risk Quantification 

Risk tolerance, risk attitude, and risk scaling are often used in different ways. For this report, we will use the 

following meanings: 

1. Risk attitude is a subjective expression of the willingness to accept risk. 

• Risk aversion is the willingness to pay more than the EV of risk to avoid it (e.g., a person or 

organization is willing to pay $10 to avoid losing an EV of $5). 

• Risk seeking is the willingness to accept risk instead of paying the EV to avoid it (e.g., a person or 

organization is willing to pay no more than $5 to avoid an expected loss of $10). 

• Risk neutral is neither risk averse nor risk seeking, the willingness to pay exactly the EV of risk to 

avoid it (e.g., a person or organization is willing to pay $10 to avoid losing an EV of $10). Risk-

neutral individuals are indifferent to extreme risk as long as the EV is zero or greater. Only EV 

matters. The implications of risk neutrality and indifference to extreme risk are discussed further in 

Section 4.4. 

 

2. Risk scaling is the quantification of risk attitudes. This is defined by the CPUC as “a function or 
formula that specifies an attitude towards different magnitudes of Outcomes including capturing aversion to 
extreme Outcomes or indifference over a range of Outcomes.”38 In other words, risk scaling is how much 
one is willing to pay to avoid a risk—and more importantly how much an organization is willing to pay to 
avoid increasing amounts of risk. Risk scaling can be visualized as follows, in Figure 4-2. 
 

 

36 Tomas Dohmen, Armin Falk, David Huffman, Uwe Sunde, et al. “Individual Risk Attitudes: Measurement, Determinants and 

Behavioral Consequences.” Journal of the European Economic Association 9, no. 3(1 June 2011): 526-531. 

https://academic.oup.com/jeea/article/9/3/522/2298422  

37 John Adams and Michael Thompson, “Taking Account of Societal Concerns About Risk: Framing the Problem.” Research 

Report 035. UK Health and Safety Executive. https://www.hse.gov.uk/research/rrpdf/rr035.pdf  

38 CPUC R20-07-013, Appendix A, page A-5. 

https://academic.oup.com/jeea/article/9/3/522/2298422
https://www.hse.gov.uk/research/rrpdf/rr035.pdf
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Figure 4-2. Risk scaling curves 

All the curves have a positive slope. Risk neutrality is represented by a straight line with a slope equal to 1. 

This means an organization is willing to pay $1 to avoid losing $1 of risk, or willing to pay $100 to avoid 

losing $100 of risk.  

Risk aversion is represented by a line or curve with a slope greater than 1. Scaled risk is perceived as higher 

than actual risk, consistent with risk aversion. The details vary depending on the chosen risk aversion curve, 

but one example of a risk aversion curve would mean that an organization is willing to pay $1 to avoid $0.90 

of risk or $100 to avoid $60 of risk.  

Risk seeking is represented by a line or curve with a slope less than 1—scaled risk is perceived as lower than 

actual risk. Similarly, the detail could vary depending on the chosen risk-seeking curve, but one example 

would be an organization willing to pay no more than $1 to avoid $1.10 of risk, or no more than $60 to 

avoid $100 of risk. 

For utility risk, we are primarily interested in risk aversion and risk neutrality. We will leave further 

discussion of risk-seeking in fields populated by gamblers and excitement junkies. 
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3. Risk tolerance is the probabilistic expression of risk attitude. The CPUC definition is the 
“Maximum amount of Residual Risk that an entity or its stakeholders are willing to accept after application 
of risk Control or Mitigation.”39 Risk tolerance can be visualized with exceedance curves, as in Figure 4-3 
below. The exceedance curve has a negative slope, and each point on the curve depicts the maximum level of 
acceptable risk for the associated probability. Since each point on the curve represents the same risk of 
$0.01, it is called the constant risk exceedance curve.40  
 
The constant risk tolerance curve is useful for translating a risk scaling function to risk tolerance.  

• For risk scaling, a risk-averse or risk-seeking function is multiplied against the risk-neutral curve.  

• For risk tolerance, the constant risk curve is divided by the risk-averse or risk-seeking function. This 
transformation changes the shape of the curve, but not its interpretation. For example, the risk-
averse scaling curve is convex, but the risk-averse tolerance curve is concave as in Figure 4-4. 

 
The constant risk exceedance curve is not the same thing as risk neutral, which we will explain further in 
Section 4.4. The relationship between risk scaling and risk tolerance curves is discussed in more detail in 
Appendix E 
 

 

Figure 4-3. Exceedance curve example (in log-log space for readability).41  

 

39 CPUC R20-07-013, Appendix A, page A-5. 

40 Also known as iso-risk curve. See Rick Gorvett and Jeff Kinsey, “A Two-Dimensional Risk Measure” (Call Paper Program for 

2006 Enterprise Risk Management Symposium). 7-8. 

https://citeseerx.ist.psu.edu/document?doi=bef8e5125d5dcede72b599c97c6644e520ed6520&repid=rep1&type=pdf   

41 An exceedance curve is the probabilistic representation of a single level of risk, in this case, risk = $0.10. Each point of risk on a 

risk scaling curve could have its own exceedance curve. 

https://citeseerx.ist.psu.edu/document?doi=bef8e5125d5dcede72b599c97c6644e520ed6520&repid=rep1&type=pdf
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In the example above, the tolerable risk at 10% probability is no more than $0.10, which results in an EV of 
residual risk of $0.01. At 0.01% probability, the tolerable risk is no more than $100, again resulting in an 
expected residual risk of $0.01. More generally, any risk level above the curve is unacceptable (for example 
an expected residual risk of $0.02), while risk levels below the curve are within tolerance.  
 
In Figure 4-4 below, we will add a risk-averse curve by applying a risk-averse scaling function. The risk-
averse exceedance curve (green) is below the risk constant line, signifying a lower maximum acceptable level 
of residual risk for relatively infrequent but more extreme events. 
 

 

Figure 4-4. Impact of different risk tolerances in evaluating a modeled risk. 

We can overlay a modeled risk, represented by the red line, which could represent the new level of risk after 
mitigations have been applied, and determine whether it meets risk tolerance standards. At below 1% 
exceedance, the red line lies below the blue curve, which would be acceptable for a constant risk tolerance. 
For the risk-averse curve, however, the red line would exceed tolerance.  
 
Imagine if there were no risk tolerance curves in Figure 4-4. How would anyone accept that the level of risk 
reduction represented by the red line was sufficient? Different stakeholders may differ in their risk attitude, 
some may be risk-neutral, others risk-averse. Even among the risk-averse, some will be more averse than 
others. Without a risk tolerance standard, determining whether the red line marks an acceptable level of risk 
will require deliberations between the stakeholders for every point along the line, and if they are unaware of each 
other’s risk attitude, many of their voices will argue past each other.  
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Making the risk tolerance standard explicit and transparent shifts the deliberative process to the standard 
rather than to each individual project. After the initial effort to determine risk tolerance standards, it is 
straightforward to assess whether residual risk is within tolerance. 

4.3 Risk Cannot be Represented as a Single Number 

The key concept underlying the discussion so far is that risk cannot be represented by a single number, such 

as an average or a percentile. Each of the three wanderers faces an average risk of $100, but the histograms 

in Figure 4-1 illustrate very different assessments of the consequences and probabilities. These are not the 

same risks. 

Risk scaling, as discussed in CPUC decision D.24-05-064, does not solve the problem of single-number risk 

scores. It merely replaces one single number with another. A risk-scaled single-number is akin to selecting a 

percentile from the underlying probability distribution, which simplifies the calculations and decision-

making. However, a risk-scaled single-number may oversimplify and cause non-optimal decision-making, 

especially when comparing different risk types. More specifically, when used in calculations, single-number 

risk scores and risk scaling run afoul of the laws of the arithmetic of uncertainty in three critical ways: 

1. The Flaw of Averages. This is a systematic set of errors that occurs when using single numbers such as 

averages as inputs in complex models.42 The Flaw of Averages is accentuated by non-linear functions, and 

especially for power law distributions used in modeling many types of risk including wildfire consequences. 

Appendix B will provide a fuller discussion of the Flaw of Averages. 

2. The Flaw of Extremes. These are mathematical errors that occur when extreme results such as 90th 

percentiles are added as single numbers, related to the Flaw of Averages.43 Adding single risk scores taken as 

percentiles from a distribution will likely result in a total risk that vastly overstates actual risk, which can lead 

to over-investing in risk mitigation. Appendix C will provide a fuller discussion of the Flaw of Extremes. 

3. Likelihood of Simultaneous Failures (LoSF). This is the probability that two risk events occur at the same time, 

which can greatly increase if the risks are interrelated. Often a factor in catastrophic events, e.g., “perfect 

storms.”44 It is impossible to capture simultaneous failures with single-number risk scores. Appendix D will 

provide a fuller discussion of LoSF. 

The alternative to using single numbers is to use probability distributions. Probability distributions can be 

added, subtracted, and multiplied (including by scaling functions) using the arithmetic of uncertainty. There 

is compelling evidence that the large utilities have the underlying probabilities, which means the “raw 

 

42 See https://johnmjennings.com/beware-the-flaw-of-averages/ . Also, Sam L. Savage, The Flaw of Averages. (John Wiley & Sons, 

2009). 

43 Sam L. Savage. The Flaw of Averages. Op.cit. Chapter 17. 

44 We attribute the term likelihood of simultaneous failure and LoSF to Dr. Sam Savage. 

https://johnmjennings.com/beware-the-flaw-of-averages/
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materials” for proper risk modeling are available.45 Appendix A will provide a fuller discussion of the 

arithmetic of uncertainty. 

The Flaw of Averages, Flaw of Extremes, LoSF, and the arithmetic of uncertainty will also be significant 

topics in our Guidance on Interrelationships Report. 

4.3.1 Using the Whole Probability Distribution 

Why rely on single numbers to represent risk when there is an entire probability distribution to work with? 

One can still calculate the average, the median, or any percentile for use in summary reports (i.e., the single 

number representation of risk). When adding different risks together or aggregating risk through an 

organization’s hierarchy, using probability distributions ensures proper results.  

In addition, the probability distribution includes the extreme risks present in the tail of the distribution, 

known as tail risk. Using the whole probability distribution allows us to use all these representations of 

risk—and use them simultaneously, such as the average risk and the tail risk. Once a probability distribution 

is reduced to a single number, it is no longer possible to model the effect of the most extreme catastrophic 

risks.  

The next section will discuss tail risk and diverse ways to represent it in more detail. 

4.3.2 Tail Risk Concepts 

“The problem with the standard way of thinking about risk is that it is focused on the average and ignores the impact of rare, 

extreme events. We are often too focused on the average or the median, and miss the importance of the outliers, the Black 

Swans, which are responsible for the majority of the impact.” – Nassim Nicholas Taleb, The Black Swan 

Extreme events are where ruin is found – Benoit Mandelbrot 

The Commission, the utilities, and the intervenors all understand the importance of risk in the tails of the 

distribution. The question is how to incorporate tail risk into the RDF. 

Level 4 believes that a single-number scaled risk score is not the best approach, preferring alternative 

methods for expressing and evaluating tail risk. Figure 4-5 below represents a hypothetical wildfire risk 

power law distribution.46 Note that this is a visualization of pre-mitigated risk, not risk tolerance. The tail 

risk is the flat part of the curve extending to the right, which represents low probability—and potentially 

catastrophic—risks. 

 

45 Examples from WMP and RAMPs covered in more detail in Chapter 6. 

46 The power law is typically applied to the consequence attribute, but the resultant risk calculation will retain the power law 

shape. 
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Figure 4-5. Hypothetical wildfire safety risk power law. 

The average of the curve in Figure 4-5 is 7, which clearly is not a good representation of the risk, at least not 

in isolation. We are more interested in the small but non-zero chance of extreme risks located in the tail. 

Figure 4-6 below illustrates four ways of expressing tail risk: 

1. Scaling function. A convex (risk-averse) function shifts the curve to the right, which increases the perceived 

risk.47  

2. Percentile. A single value at a point on the curve. In Figure 4-5 above, the chosen percentile is 99% (the 

risk, which occurs 1% of the time), which equates to the point on the curve at $50. 

3. Tail average. The average of the tail above a chosen percentile. In the example above, the tail average is 

defined as the risk above the 99th percentile (the risk occurs less than 1% of the time), which corresponds to 

the point on the curve at $50. All values at $50 and above are averaged, capturing the tail. 

4. The power law curve itself. This is the same as using an infinite number of percentiles and is the same as the 

exceedance curves discussed earlier.  

 

47 Risk scaling processes the original risk into a new distribution. This can cause confusion between the scaled risk and the actual 

risk, and how to interpret. As will be discussed later, risk scaling is not Level 4’s preferred approach. 
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Figure 4-6. Four ways to visualize measures of tail risk. 

Figure 4-7 below calculates the corresponding tail risk measures from Figure 4-6: 
 

Safety Risk 
Average* $7 

#1. Scaled Average $41 
#2. P99th% $50 

#3. Tail average above P99th% $70 
*Average of entire risk curve (#4)   

Figure 4-7. Average risk and tail risk calculations. The row numbers correspond with the labels in Figure 

4-6. 

Each of the tail risk calculations is many multiples of the average risk, which will be of interest (and 

concern!) to risk-averse evaluators. They differ in important respects:  

• Average. The average, or EV, of the entire risk curve. The average includes the tail but does not 

adequately represent it. 

• 1. Scaled average. The average of the scaled function. Though it places extra weight on the tail, like the 

average it blends the tail in with the rest of the curve and thus dilutes the tail. Depending on the 

formulation of the scaling function, it can be difficult or impossible to optimize. For tail risk 

evaluation, the scaled average functions like the percentile approach (discussed next), with the 
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disadvantage of not specifying the exact percentile. For example, the scaled average in Figure 4-7 

above is 41, which is implicitly the same as using the value at the 98.5th percentile. 

• 2. Percentile. Also known as Value at Risk (Var), it has the benefit of being easy to calculate and may 

be the most stable measure of the tail in situations where there is concern about the validity of the 

most extreme events. Percentile values can be difficult to optimize when evaluating large portfolios 

of assets, which are in different areas and have diverse levels of inherent risk. A key disadvantage is 

that Var ignores risks above the chosen percentile, which could include catastrophic risks. For 

example, the Var at the 99th percentile in Figure 4-7 is $50, which excludes significant risks exceeding 

$100.  

• 3. Tail average. Also known as Conditional Value at Risk (Cvar), it captures the entire tail above the 

selected percentile. For that reason, it is more stable if the number of data points or simulation trials 

changes (as long as there is no concern about the validity of the most extreme events). It is also 

possible to optimize using linear programming, which greatly increases computational efficiency 

during optimization. For Figure 4-7 we calculated the tail average for the 99th percentile at $70, 

which includes all risks above $50. The tail average above a certain percentile will always be higher 

than the risk at that percentile. 

• 4. The entire risk curve. While attractive in theory, potentially having to assess risk along an infinite 

number of points is impossible. The alternative would be to choose several points along the curve, 

which is the same thing as choosing multiple percentiles. Conceptually, this is the approach taken for 

the Transparency Pilots that are part of CPUC decision D.24-05-064 and could be useful for 

sensitivity analysis.  

While using the entire risk curve to assess risk may be impractical, it is paramount to preserve the 

entire risk curve for aggregating risks in obeyance of the laws of the arithmetic of uncertainty. 

Level 4’s preferred approach for incorporating tail risk is to use the tail average, given its stability under 

many conditions and its beneficial optimization properties. Mitigations could be evaluated based on 

reducing average risk and tail average risk, which is discussed in detail in Section 5.7. For example, 

mitigations addressing the safety fire risk in Figure 4-7 would be evaluated based on how much and how 

cost-efficiently they reduce the average risk of $7 and the tail average risk of $70. 

4.3.3 Risk Tolerance and Cost-Benefit Analysis 

CPUC decision D.22-12-027 modified the RDF by replacing the multi-attribute value framework (MAVF) 

with the cost-benefit approach (CBA). In a CBA, the decision to invest in a project is based on the benefit-

cost ratio (BCR). A BCR of 1.0 means that the benefits of a project exactly equal its costs, so a typical 

decision rule for investing in projects is a BCR greater than 1.0. 

The BCR can be tied directly to risk attitude. Recall that the definitions for risk-neutrality, risk-aversion, and 

risk-seeking are based on willingness to spend to avoid risk. Risk-neutrality is the willingness to spend 

exactly the EV of risk to avoid it, risk-aversion is the willingness to spend more than the EV, while risk-

seeking will only pay less than the EV. The risk attitudes can be visualized by the BCR curves in Figure 4-8. 
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Figure 4-8. BCR and risk attitude.48  

BCRs only make sense if the benefits (numerator) are based on average risk reduction. Using risk 

scaling or any measure of tail risk as the numerator to calculate BCR will result in significant over-investing. 

The example in Figure 4-9 illustrates our concern. 

 

Portfolio-001 Average Scaled Average Tail Average 

Risk Reduction $80 $150 $320 

Cost $100 $100 $100 

BCR 0.80 1.50 3.20 

Figure 4-9 Hypothetical risk reduction BCR calculated 3 ways. 

 

48 To avoid risk, the risk-averse are willing to invest at BCR below 1.0, the risk-neutral are willing to equal a BCR of 1.0, and the 

risk-seeking will set a BCR threshold greater than 1.0. 

BCR = the slope of the 

curve at each point 
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Suppose the BCR threshold for selecting a portfolio of risk mitigations49 is 1.0. Mitigation-001 has a BCR of 

0.80 based on the ratio of average risk reduction and cost, which could result in the portfolio of mitigations 

being reassessed since costs exceed benefits. Perhaps costs can be further reduced, or a different portfolio 

with a slightly different set of mitigations and higher BCR might be considered. 

Calculating BCR based on tail risk measures such as scaled average or tail average, however, will almost 

always result in BCRs above 1.0 creating the illusion of high cost-efficiency. Such calculations could be used 

to justify almost all mitigations, resulting in over-investment. In theory, a higher BCR threshold could be 

used for evaluating tail BCRs, but how would those be set? It is a slippery slope best avoided. 

If the goal is to reflect risk aversion, it is better to use average risk reduction in the numerator and set the 

threshold for BCR to be less than 1.0. 

Before we close out the discussion on tail risk, we will revisit the notion of risk neutrality and its special 

relationship with tail risk. 

4.4 Risk Neutrality and Tail Risk 

The tail risk discussion so far has been implicitly based on risk-averse tolerance. That is because risk 

neutrality means indifference to tail risk! A risk-neutral evaluator cares only about the EV of risk and ignores 

any potential downsides.50 While a long-tailed risk curve such as a power law might impact the EV of the 

risk, the tail itself is of no interest. It therefore doesn’t even need to be calculated, much less evaluated. This 

surprising implication of risk neutrality is demonstrated in Figure 4-10. 
 

  Likelihood Consequence A Likelihood Consequence B Risk 

Risk A 100% $1,000  0% $0  $1,000 

Risk B 10% $10,000  90% $0  $1,000 

Risk C 1% $100,000  99% $0  $1,000 

Risk D 0.10% $1,000,000  99.90% $0  $1,000 

Risk E 0.01% $10,000,000  99.99% $0  $1,000 

Risk F 0.001% $100,000,000  99.999% $0  $1,000 

Risk G 0.00001% $10,000,000,000  99.99999% $0  $1,000 

Figure 4-10 A risk-neutral evaluator is indifferent to risks A to G since they all have the same EV of $1,000 

Anyone who would tolerate an average risk of $1,000—but not say a 1% chance of losing $100,000 (risk C) 

or a 1 in 10,000 chance of losing $10 million (risk E)—is risk averse. 

 

49 We will discuss evaluating portfolios of mitigations as opposed to individual mitigations in section 5.2. 

50 Gordon Scott, “What is Risk Neutral? Definitions, Reasons, and Vs. Risk Adverse,” Investopedia (2022). 

https://www.investopedia.com/terms/r/riskneutral.asp  

 

https://www.investopedia.com/terms/r/riskneutral.asp
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It is now time to return to the three wanderers to tie the concepts of Chapter 4. 

4.5 Epilogue: Risk Assessment, Risk Tolerance, Risk-Based 

Decisions, and the Three Venturers 

Earlier, we left unanswered how the three venturers would approach deciding whether to accept the risk as 

they saw it or to mitigate the risk by paying the cost of the helicopter. The decision approach for each 

venturer can be visualized in Figure 4-11. 

  

Figure 4-11. The three venturer decision approach. 

• Venturer 1. V1 is risk neutral, and V1 will only pay the EV of the risk assessment to mitigate the risk. 

Since the EV of the helicopter is 33% higher than the risk assessment, without hesitation V1 turns 

off at the next exit and the $100 tickets go unused. 

o The visualization of V1’s decision process in Figure 4-11 is a straight comparison of EVs; 

probabilities are not considered. That is why V1’s visualization is different than the others. 

Even if V1’s risk assessment was the same as the probabilistic ones made by V2 or V3, V1’s 

decision wouldn’t change since the EVs are the same. 

• Venturer 2. V2 is moderately risk-averse, denoted by the risk-averse line whose slope is -1.7.51 V2’s 

assessment of a 50% chance of losing $200 is represented by the red triangle that is just slightly 

above the risk tolerance line. While the risk assessment exceeds tolerance, V2 has a decision to 

make. Is the cost of the helicopter worth mitigating the risk? V2 will likely choose to accept the risk 

in this instance since the risk only slightly exceeds risk tolerance compared to the cost of the 

helicopter. 

• Venturer 3. Meanwhile, V3 is more risk-averse than V2. V3’s risk tolerance curve has a slope of -2.5 

and V3 has a much easier time deciding. The potential of a $1,000 loss—the tail risk—is so far 

beyond V3’s risk tolerance, the distance between the red triangle and the risk-averse curve, that V3 

has already made the decision to take the helicopter. 

According to a straight interpretation of the expected value theory, none of the venturers should accept the 

cost of the helicopter. But that is before consideration of risk tolerance and tail risk. Once those are 

considered, one and possibly two of the venturers will choose the helicopter. 

 

51 Any line with a slope less than -1.0 is risk averse; greater than -1.0 would be risk seeking. 
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The parable demonstrates the interplay between probabilistic risk assessment, risk tolerance, and risk-based 

decisions. In Chapter 5, we will explore how simple optimization based on this interplay can work for utility 

risk management. 

4.6 Chapter 4 Summary 

• Risk cannot be represented as a single number when performing risk calculations. It must be 

represented by a probability distribution such as a power law, which enables the arithmetically 

correct aggregation of risk and allows working with average risk along with tail risk. 

• Risk tolerance is the stochastic representation of a subjective risk attitude combined with an 

appropriate risk scaling function. Risk tolerance also cannot be represented as a single number in 

risk calculations and can be visualized probabilistically by exceedance curves. 

• Risk-based decisions should be based on the relationship between the probability distributions of 

risk and risk tolerance. As a first step, this can be done by comparing the average and tail average of 

the risk probability distribution versus the average and tail average of the risk tolerance probability 

distribution. 
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5 Optimizing Risk-Based Decisions 

5.1 The difference between ranking and optimizing 

In Chapter 4 we made the case that a probabilistic view of risk and risk tolerance are inseparable for risk-

based decisions. We now turn to the actual risk-based decision. If after assessing risk and applying risk 

tolerance there is only one course of action, the decision is easy. Most of the time, however, multiple 

options will remain in play.  

CPUC decision D.16-08-018 established the MAVF framework and “explicitly asks for calculations of risk 

reduction and a ranking of mitigations based on risk reduction per dollar spent.”52 This decision rule is also 
known as risk spend efficiency (RSE). Ranking based on RSE does not qualify as optimization, but as The 
Utility Reform Network (TURN) pointed out in D.18-12-014 it can be viewed as an “optimization 
heuristic.”53 This holds true for ranking by BCR in a cost-benefit analysis. 
 
Ranking based on RSE or BCR can lead to optimal decisions if the mitigations are independent, that is, the 
choice of one mitigation does not affect the choice or effectiveness of another. Independence between 
mitigations is rarely the case. It is common for mitigations to be interrelated, where mitigations may be 
mutually exclusive, synergistic, or exhibit diminishing returns. 
 

• Mutually exclusive. Mitigations that cannot work together to reduce risk. Undergrounding and covered 
conductors on the same circuit segment are examples of mutual exclusivity. It would not make sense 
(or possible) to do both, even if they had the highest BCR ranks. 

• Synergistic. Mitigations that work together to decrease the amount of risk. In cyber risk prevention, 
multi-factor authentication and security awareness training can create a more robust defense against 
cyber-attacks than either alone.54 

• Diminishing returns. Mitigations that reduce risk together, but as investment in one increases, the need 
for the other mitigation is reduced. This is because each mitigation reduces the amount of risk that 
the other mitigation would be expected to eliminate. Reducing the risk of dam failure by increasing 
spillway capacity and raising the height of the dam is likely to have diminishing returns since the 
success of one reduces the risk that needs to be addressed by the other. 

 
A simple numerical example drives home the point—suppose two mitigations each reduce risk by 60%. We 
would not expect that by employing both mitigations we would reduce risk by 120%. Furthermore, budget 
limitations can reduce independence between mitigations. For example, when approaching budget limits, 
smaller mitigations may replace larger ones even if the larger ones are ranked higher. 
 

 

52 CPUC decision D.16-08-018, page 3. 

53 CPUC decision D.18-12-014, page 57. 

54 “Initiative: Multi-Factor Authentication (MFA) and Security Awareness Training Expansion,” The University of Memphis, 

https://www.memphis.edu/its/security/duo_training_expansion.php  

https://www.memphis.edu/its/security/duo_training_expansion.php
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A solution to evaluating interrelated mitigations is to construct portfolios of mitigations, which can be 
compared and ranked. Creating portfolios of mitigations is the topic of the next section. 

5.2 Managing Risk Based on Portfolios of Mitigations 

Borrowing from finance theory, a portfolio approach is one way to handle real-world uncertainty and the 

existence of interrelationships between projects.  

A portfolio of mitigations could include any combination of feasible (i.e., non-mutually exclusive) 

mitigations. Suppose we are considering 3 mitigations, M1, M2, and M3. There could be a total of 7 

different portfolios, as laid out in Figure 5-1. 
 

Port_1 M1 

Port_2 M2 

Port_3 M3 

Port_4 M1, M2 

Port_5 M1, M3 

Port_6 M2, M3 

Port_7 M1, M2, M3 

Figure 5-1. Possible portfolio combinations for three mitigations. 

Seven portfolios for 3 mitigations assume none of the mitigations is mutually exclusive. If M1 and M2 were 

in fact mutually exclusive, such as undergrounding and covered conductor on the same section, the set of 

possible portfolios would be reduced, as shown in Figure 5-2. 

Port_1 M1 

Port_2 M2 

Port_3 M3 

Port_4 M1, M3 

Port_5 M2, M3 

Figure 5-2. Possible portfolios for three mitigations excluding mutually exclusive ones. 

Within each portfolio, synergies and diminishing returns would be accounted for. Cost and benefit are 

calculated at the portfolio level. Portfolios can be evaluated against each other and the best one is chosen. 

But first, a potential issue. The number of possible portfolios that can be constructed from N number of 

mitigations is 2^N-1. If there are 1,000 mitigations under consideration, that could mean as many as a 1 

followed by 300 zeros (or 1x10^300) number of portfolios. Fortunately, the vast majority of portfolios are 
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clear losers and don’t need to be constructed, much less evaluated. Computational techniques such as linear 

optimization rapidly whittle the number of portfolios down to a manageable set.  

There is also the question of whether portfolios should include mitigations across all risk events. In theory, 

this is the correct approach but in practice could prove cumbersome, especially when evaluating risk events 

separately. Portfolios may be created for each risk event, which might require additional optimization steps. 

There might be a slight reduction in optimality, but this loss would be minor compared to improved 

flexibility for addressing risk events individually. 

5.3 Portfolio Optimization: Efficient Frontiers 

The first and most important question in optimization is “What are we optimizing for?” Lowest cost? 

Highest efficiency? Lowest residual safety risk? Lowest residual total risk?  

Based on decisions in the RDF Proceeding, the goal is to minimize residual risk within affordability 

constraints, which is different from maximizing. To understand the difference, consider two portfolios: 

• Port_1 has a mitigation value (benefit) of $1,000 and costs $200, for a BCR of 1,000/200 or 5.0 

• Port_2 has a mitigation value (benefit) of $1 billion and costs $0.5 billion, for a BCR of $1B/$0.5B 

or 2.0 

If the goal is to minimize residual risk, $1 billion of risk reduction is better than $1,000, and Port_2 still has 

a BCR greater than 1, which is sufficient for neutral or averse risk tolerance. In optimization lingo, we are 

maximizing risk reduction, subject to a minimum threshold for BCR.55 

Further constraints can be added. If there was a maximum spend constraint of $0.25 billion for 

affordability, then Port_2 would be reduced to a benefit of $0.5 billion at a cost of $0.25 billion, even if 

it meant forgoing an additional $0.5 billion of mitigation benefit.56 Or, Port_2 could be replaced by 

another portfolio if there is one with a higher BCR at a $0.25 billion expense. 

The above example shows why we cannot rank portfolios based purely on BCR. We also cannot rank based 

on benefits (the amount of risk mitigated) alone, what if the portfolio with the highest benefit had costs that 

were twice as high? 

In 1952, Harry Markowitz solved this problem in his article “Portfolio Selection,” published in The Journal 

of Finance.57 In the article, Markowitz developed the concept of an efficient frontier of optimal portfolios, 

established the principle of evaluating the risk and return characteristics of the portfolio, not the individual 

 

55 Technically, we are minimizing level of residual risk, which is not always the same as maximizing mitigation impact. This nuance 

is discussed further in appendix F. 

56 This example assumes a constant BCR for Port_2 instead of diminishing returns for simplicity.  

57 Harry Markowitz, “Portfolio Selection,” The Journal of Finance 7, no. 1 (March 1952): 77-91. 
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assets within the portfolio, and laid the groundwork for evaluating trade-offs between portfolios. 

Markowitz’s principles can be applied to portfolios of real assets, not just financial assets.58 

5.3.1 The Efficient Frontier 

Markowitz’s solution is elegant—if you plot each risk mitigation portfolio on an X, Y scatter plot with 

mitigation benefit on the Y axis and mitigation expense on the X axis, you will get a chart that looks 

something like Figure 5-3. Note that the units of the X and Y axes make up the components of the BCR. 

 

Figure 5-3. Efficient frontier, with optimal portfolios along the blue line, and suboptimal portfolios below 

the line. The impossible portfolio is an example of fraud. 

In Figure 5-3, the set optimal portfolios lie on the blue line, which is the efficient frontier. For each optimal 

portfolio, it is impossible to obtain higher benefits without paying more. There can be no portfolios above 

the efficient frontier. In other words, each of the portfolios on the blue line represents the maximum 

possible BCR at that level of risk reduction. Suboptimal portfolios (red x’s) lie below the efficient frontier. 

 

58 For an example of water companies, see Manuel Mocholi-Arce, Ramon Sala-Garrido, Maria Molinos-Senante, and Alexandros 

Maziotis, “Performance assessment of water companies: A meta-frontier approach accounting for quality of service and group 

heterogeneities,” Socio-Economic Planning Sciences, 74 (April 2021). 

https://www.sciencedirect.com/science/article/abs/pii/S0038012120307850 

 

https://www.sciencedirect.com/science/article/abs/pii/S0038012120307850
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These are suboptimal because, for each of them, there is at least one portfolio that provides greater benefit 

for the same or lower cost. It would be irrational to choose a suboptimal portfolio.  

Figure 5-3 does include a portfolio above the efficient frontier, which by definition is impossible and 

therefore fraudulent. In fact, applying the concept of efficient frontiers is how the authorities eventually 

caught Bernie Madoff.59 

A feature of efficient frontiers is that the slope of the line decreases as you move up the curve. This means 

that BCRs are decreasing as portfolios increase in cost and benefit (diminishing marginal returns).60 

A key observation is that the efficient frontier usually contains multiple portfolios—see Figure 5-4 for a 

more realistic visual of an efficient frontier. Many of the optimal portfolios will vary only slightly. The 

ultimate selection will depend on risk tolerance—the risk-averse may prefer one of the more expensive 

portfolios that generate higher benefits, albeit with lower BCRs—and also on safety vs. reliability impacts, or 

different Environmental and Social Justice (ESJ) impacts or other goals. Budget and available resources 

always play a critical role.  

An example of a portfolio would be a series of circuit segments that are being mitigated for a risk. Each 

circuit segment would have its own targeted mitigations (like undergrounding or covered conductors). 

Together all of the costs associated and benefits (risk mitigated) for each circuit would be aggregated 

together at the level of a portfolio. A different portfolio may be the same, except one of the circuit segments 

may be mitigated with a different mitigation causing a slight difference in benefit (benefit=risk reduced) and 

cost. As one iterates through the potential combinations, one finds optimal portfolios, each with its own 

benefit and cost. 

 

59 Harry Markopolos (not to be confused with Harry Markowitz), No One Would Listen: A True Financial Thriller (John Wiley & 

Sons, 2010). 

60 This is not quite the same as diminishing marginal utility, which leads to risk aversion. Diminishing marginal returns for 

portfolios reflects that the number of high-return investments is limited, and at some point, adding more investments dilutes 

returns. 
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Figure 5-4. Efficient frontier calculated from over 700 portfolios. Multiple portfolios on or very close to 

efficient frontier provide an opportunity to make trade-offs. Portfolio Port_144 lies on the efficient frontier. 

The selection of which optimal portfolio is a subjective one that weighs risk tolerance, other trade-offs, and 

impact on affordability.  

5.4 Stochastic Optimization 

The efficient frontier discussion in Section 5.3 didn’t specify how portfolio benefit was defined, but the 

implication is that it represents an average benefit, which is appropriate when calculating BCRs. What about 

tail risk? Can you create efficient frontiers that take tail risk into account? Can you use tail risk in 

optimization? The answer to both questions is yes. 

Figure 5-5 calculates an efficient frontier for tail average risk as our measure of tail risk and is presented 

along with the original efficient frontier based on average risk. The portfolios are the same on both 

frontiers—except for the third one (from the bottom of the curve). At around $50 portfolio cost, the 

optimal portfolio for average risk is Port_07, but for tail average the optimal portfolio is Port_05. 
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Figure 5-5. Efficient frontiers for average risk and tail average risk. 

What does this mean? At the level of cost where Port_07 is optimal for average risk, a different set of 

mitigations is more optimal for reducing tail risk, and these make up Port_05. Which portfolio is selected 

will depend on risk tolerance—the risk-averse may prefer the greater reduction of tail risk in Port_05 

because it is more likely to mitigate catastrophic events whereas Port_07 may be more likely to mitigate 

common events that are less risky. There can be other considerations as well. Fortunately, it is possible to 

optimize across multiple considerations, which mathematically are called “dimensions.” 

5.5 Optimizing for Multiple Considerations (Dimensions) 

The decisions in the RDF Proceeding recognize the multi-dimensional nature of mitigating risk and do not 

require basing mitigation decisions solely on a single measure such as BCR.61 There are other trade-offs that 

must be considered, for example, safety vs. reliability, affordability, ESJ impact, time exposure, or execution 

risk (and others). These trade-offs can be optimized quantitatively, for example by setting minimum 

requirements for safety improvement and reliability impact or a maximum rate increase during a single GRC 

cycle. For optimal portfolios, trade-offs between similar portfolios can be further evaluated subjectively, as 

visualized in the “herringbone” diagram62 as seen in Figure 5-6. 

 

61 CPUC decision D.24-05-064, Appendix A, Row 26. 

62 We acknowledge Dr. Sam Savage for coming up with the idea of herringbone diagrams (named for the distinctive visual it 

creates). 
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Figure 5-6. Herringbone diagram depicting safety and reliability trade-offs in natural units63 at different 

budget levels. 

The herringbone diagram visualizes trade-offs in three dimensions: safety, reliability, and budget. The 

portfolios on the connected curves are optimal (they are taken from the efficient frontier), while the 

portfolios marked by squares are sub-optimal, shown for context. Each color represents a budget range. The 

only way to achieve a higher level of safety than Port_3 (red) would be to jump to the next budget range of 

Port_7 (green). 

Keeping with Port_3, it shares the efficient frontier with two other portfolios at the low (red) budget range. 

The other two portfolios trade off lower safety for higher reliability. All three portfolios are optimal, but 

the final selection would depend on how the evaluator weighs safety vs. reliability. 

Herringbone diagrams can be used for any number of trade-off dimensions. It would be possible to create a 

dashboard of multiple herringbone diagrams to visualize all the trade-offs together. 

Tail risk can also be represented in a herringbone diagram, for comparison with average risk as in Figure 

5-7. In this example, the optimal portfolio for the moderate (green) budget is Port_5, which is different 

from the optimal portfolio for average risk (refer back to Figure 5-6 and Figure 5-5 above). Port_5 

emphasizes reliability more than safety for tail risk reduction. Whether to select Port_7 or Port_5 will 

depend on the evaluator’s risk tolerance and preferences for safety and reliability. 

 

63 It is possible to present the herringbone in monetized units—it looks exactly the same. The choice depends on whether 

evaluators would like to weigh the natural unit’s impact between attributes or prefer comparing monetized values.  
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Figure 5-7. Herringbone diagram for safety vs. reliability trade-off based on tail average risk. 

These examples highlight the subjective nature of risk and risk assessment, but it does not mean there is 

a license to make any decision according to any agenda. The efficient frontier greatly reduces the possible 

decisions to a manageable set of optimal (or near optimal) portfolios of mitigations. An explicit risk 

tolerance creates additional boundaries for justifiable decisions. Finally, portfolio optimization and risk 

tolerance improve the transparency of final decisions: it should be clear for all to see how close the decision 

aligns with the efficient frontier, how it stacks up against alternatives, and whether it is within risk tolerance.  

5.6 Optimizing Frameworks 

This section will provide an overview of the CBA decision framework and its two ranking or optimization 

methodologies (see Figure 5-8.) 

 

Figure 5-8. Risk decision framework. 
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CPUC D.22-12-027 modified the RDF to require CBA instead of MAVF. In CBA, benefits and costs of 

mitigations are calculated in dollars, using a monetization factor to translate the natural units into dollars. 

For decision-making, the benefit value is divided by the cost value, creating the benefit-cos ratio (BCR). A 

BCR greater than 1.0 means that the benefits exceed the costs and a BCR of 1.0 is often, though not 

always,64 used for selecting mitigations. A BCR can be calculated for each mitigation option or used in 

optimization.  

5.6.1 ALARP (As Low as Reasonably Practicable) 

Another optimization process is called ALARP, which stands for As Low as Reasonably Practicable. What 

sets ALARP apart is its three-tiered approach to optimization (which includes BCR). 

• Tier I. Risk exceeds maximum risk tolerance, mitigate immediately regardless of cost. 

• Tier II. Risk level is within maximum risk tolerance, continue to mitigate if BCR is above a set 

threshold.  

• Tier III. Risk level is at or below the accepted level of risk, no further action is taken (residual risk is 

accepted). 

Figure 5-9 illustrates the ALARP methodology. The upper and lower bounds can be considered exceedance 

curves for maximum tolerable risk and acceptable risk. The white region in between is tolerable (which is 

not to say acceptable). Risk above the upper bound, the red zone, is considered intolerable and must be 

mitigated to at least tolerable levels without regard to cost (at least in theory). Once risk is within the tolerable 

range, it should continue to be mitigated as long as a BCR threshold is met. If the risk is within the accepted 

range, the green zone, no more mitigation is required, even if it is possible to do so above the BCR 

threshold. 

  

Figure 5-9. The three tiers of ALARP. 

 

64 As discussed in Section 4.3.3, risk aversion may lead to setting the BCR threshold below 1.0. 
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Figure 5-10 shows how ALARP works in practice. It shows the pre-mitigated risk exceedance curve for a 

potential cause of dam failure (i.e., the curve plots the likelihood of a failure, and the consequence at that 

level of failure). This risk is a low probability, high consequence risk—at higher LoREs, the risk is within the 

accepted range and does not need to be further mitigated, but at the other end of the curve, at a risk less 

than 1 in 1 million, the risk is deemed intolerable.  

 

Figure 5-10. Pre-mitigated risk. 

According to the principles of ALARP, the risk in the intolerable range must be mitigated below the upper 

bound into the tolerable range. Risk within the tolerable range should be mitigated according to the BCR 

threshold, based on risk tolerance. No more investment should be made to reduce the risk in the accepted 

range. 

After mitigation efforts, the post-mitigation exceedance curve might look like Figure 5-11: 

 

Figure 5-11. Post mitigation risk. 
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Figure 5-11 shows that ALARP has been satisfied. Most important, the low probability, high consequence 

risk has been brought down to tolerable levels. Risk in the tolerable range has been reduced as well, due to 

attractive BCRs for the mitigation projects. Risk in the acceptable range was left untouched. 

5.6.2 ALARP History and CPUC Background65 

The principle of ALARP has its origins in British case law dating back to 1949, dealing with safety in coal 

mines. It became law in the UK with the Health and Safety at Work etc. Act 1974. It applies to all industries 

in the UK.  

Outside the UK, ALARP has been adopted to a lesser degree in Australia, Abu Dhabi, Belgium, Brazil, 

Denmark, Hong Kong, Ireland, Netherlands, Saudi Arabia, and the U.S. In the U.S., a similar principle has 

been used by the U.S. Nuclear Regulatory Commission since the 1950s and is included in two U.S. Federal 

regulations at the Department of Energy. The U.S. Army Corps of Engineers also uses it. 

As discussed in Section 3, CPUC staff presented a white paper advocating for ALARP66. The paper was 

much discussed in CPUC decision D.16-08-018 and subsequent decisions. It was decided that the state of 

probabilistic modeling in the utilities is not advanced enough for an ALARP implementation, but it remains 

a priority topic.67 

One of the most attractive elements of ALARP, its combination of risk tolerance and probabilistic risk 

modeling, also presents the greatest obstacle to adoption. ALARP requires establishing two risk tolerances 

for each attribute, safety, reliability, and financial. 

The utilities have made substantial progress in the probabilistic modeling of risk, but it is unclear how close 

they are to being able to fulfill the requirements of ALARP. Expressing risk as probability distributions 

instead of single-number risk scores, capturing cross-cutting risks and other interrelationships, and correctly 

aggregating risks are all prerequisites for ALARP, and will be discussed by Level 4 in its Guidance on 

Interrelationships Report. 

Finally, there are practical concerns with ALARP principles such as mitigating risk above the upper bound 

regardless of cost and the impact on competing concerns such as affordability. 

Nonetheless, ALARP’s holistic approach that combines the principles of probabilistic risk assessment and 

risk tolerance is a worthy aspiration. There are ALARP-type approaches that adopt key elements of ALARP 

that can be implemented sooner rather than later. We propose one such approach in the next section. 

 

65 This history draws on Steven Haine, Safety and Enforcement Division Staff White Paper on As Low as Reasonably Practicable (ALARP) 

Risk-informed Decision Framework Applied to Public Utility Safety. California Public Utilities Commission. (2015, December 24). 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M157/K359/157359431.PDF  

66 Steven Haine, Safety and Enforcement Division Staff White Paper on As Low as Reasonably Practicable (ALARP) Risk-informed Decision 

Framework Applied to Public Utility Safety. California Public Utilities Commission. (2015, December 24). 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M157/K359/157359431.PDF 

67 CPUC Decision D.18-10-014, page 55. 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M157/K359/157359431.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M157/K359/157359431.PDF
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5.7 Simple Optimization: One Approach 

The goal is to optimize post-mitigated risk by reducing it to an acceptable level, given affordability and other 

constraints. We have argued that post-mitigated risk must be thought of as a probability distribution. How 

do you optimize an entire probability distribution, especially if the goal is simple optimization, at least 

initially? 

One approach is to perform a two-step linear optimization, one for average risk and one for tail average 

risk. 

• Average risk is an important representation of the probability distribution since it is required for 

calculating BCRs 

• Tail average risk is a good measure of the tail of the distribution. As discussed in Section 4.3.2, it is 

stable unless there are invalid data points in the tail, and it can be optimized using linear 

programming.68 

A key point is that optimization by reducing residual risk is not exactly the same as optimization by 

maximizing mitigation impact. The distinction is subtle but could lead to suboptimal mitigation selection. 

An example of how maximizing mitigation impact can lead to different results than minimizing residual risk 

is presented in Appendix F. 

At the end of the day, we are still interested in mitigation impact, so the correct formulation is: 

Optimized mitigation impact = pre-mitigated risk – optimized post-mitigation risk.  

The two efficient frontiers can be evaluated together, and an optimal mitigation that satisfies average risk 

and tail risk reduction goals, along with any other trade-off considerations can be selected. The next section 

will discuss the risk-based decision-making process further. 

5.8 Making Optimal Risk Reduction Decisions 

Suppose we have performed an optimization that results in the following efficient frontiers for average risk 

mitigation and tail risk mitigation. The organization is interested in Port_161 because it sits on the efficient 

frontier for average mitigation and tail average mitigation (see Figure 5-12).  

 

68 Sergey Sarykalin, Gaia Serraino, and Stan Uryasev, “Value-at-Risk vs. Conditional Value-at-Risk in Risk Management and 

Optimization,” Tutorials in Operations Research, INFORMS, 2008. 

https://www.ise.ufl.edu/uryasev/files/2011/11/VaR_vs_CVaR_INFORMS.pdf  

https://www.ise.ufl.edu/uryasev/files/2011/11/VaR_vs_CVaR_INFORMS.pdf
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Figure 5-12. Hypothetical optimal mitigation selection example. 

The evaluators are also interested in the safety versus reliability risk reduction of the chosen portfolio, which 

is represented in the herringbone diagrams in Figure 5-13. 

 

Figure 5-13. Herringbone representation of safety vs. reliability trade-off. 

Port_161 has the highest safety impact of the alternative optimal portfolios at the given budget level (green 

triangles). 

Figure 5-14 calculates the key statistics from the optimizations, including applying the relevant quantification 

of risk tolerance. Post-mitigated risk (row C) is $718 for average risk and $2,095 for tail-average risk. Risk 

tolerance is shown on rows D (neutral) and E (averse). 
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    Average Tail Avg @95% 

A Pre-mitigated Risk $1,364 $4,716 

B Mitigation Benefit $646 $2,621 

C=A-B Post-mitigated Risk $718 $2,095 

D Risk Tolerance - Neutral $800   

E Risk Tolerance - Averse $700 $1,800 

        

  BCR of Mitigation Benefit 1.11   

        

Figure 5-14. Simple optimization outcomes. 

The key takeaways are that whether this portfolio is acceptable or not depends on whether an organization 

is risk-neutral or risk-averse. This portfolio meets the threshold for a risk-neutral organization — the 

average post-mitigated risk of $718 (row C) is below the neutral risk tolerance level of $800 (row D).  

For a risk-neutral organization, there is no comparison with tail average risk; by definition, risk neutrality 

does not distinguish between average and tail risk. For a risk-averse organization, however, post-mitigated 

risk is above risk tolerance—$718 (row C) versus $700 for the average (row E) and $2,095 (row C) vs. 

$1,800 for tail risk (row E), requiring further mitigation. 

The selected portfolio BCR is 1.11, which exceeds 1.0 by a healthy margin. It may warrant further 

conversation on whether the budget can be increased to reduce post-mitigated risk closer to the risk-averse 

threshold at BCR greater than 1.0 while assessing the impact on affordability. 

A question sometimes arises if it is possible for risk-averse tolerance to be the same as risk neutral for 

average risk. The answer is yes, as shown in Figure 5-15. Tolerance for average risk is $800 for risk-averse 

and risk-neutral, and post-mitigated average risk is within tolerance for risk-neutral and risk-averse. Tail 

average risk remains out of tolerance for risk averse. 
 

    Average Tail Avg @95% 

A Pre-mitigated Risk $1,364 $4,716 

B Mitigation Benefit $646 $2,621 

C=A-B Post-mitigated Risk $718 $2,095 

D Risk Tolerance - Neutral $800   

E Risk Tolerance - Averse $800 $1,800 

        

  BCR of Mitigation Benefit 1.11   

        

Figure 5-15. Simple optimization outcomes - risk-averse tolerance equals risk-neutral tolerance for 

average risk. 
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5.9 Chapter 5 Summary 

Chapter 5 has related important concepts in risk assessment, risk tolerance, and optimal decision-making: 

• Risk cannot be represented as a single number for use in risk calculations, probability distributions 

such as power laws should be used instead. 

• Risk reduction cannot be assessed without understanding risk tolerance. 

• Sophisticated frameworks such as ALARP are attractive because they combine risk tolerance and 

decision rules for mitigating risk.  

• It is possible to develop a simpler framework that requires only one risk tolerance threshold 

instead of ALARP’s two and optimizes based on average risk and tail average risk from the post-

mitigation risk probability distribution. 

• Optimization can be multi-dimensional and includes affordability, BCR, and other trade-offs such 

as safety vs. reliability.  
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6 Modifying the RDF, and Ensuring a 

Manageable Transition 

6.1 Risk Tolerance: Gaining Consensus 

All the parties to the RDF proceedings agree that risk tolerance is important,  but two key questions remain: 

1. Whose risk tolerance? 

2. How should the risk tolerance be set and used? 

Level 4 believes that tolerance for utility risk should be set at the State of California level, representing the 

residents of California. It would not be equitable for one utility to have a higher tolerance than another 

utility for safety risk, which would imply that safety depends on where someone lives in California. 

6.1.1 Risk Tolerance Considerations 

There are a number of things that need to be decided even before the challenging work of quantifying 

tolerance begins. 

• Should tolerance be set at the aggregated post-mitigated risk level in dollars, as was done in the 

example in Section 5.8? 

• Alternatively, should tolerance be set at the attribute level, in natural units? This would mean 

setting individual risk tolerances for safety, reliability, and financial risk. 

• Should risk tolerance be set for each risk (e.g., wildfire, cyber-risk, hydropower, gas containment, 

etc.)? 

• If risk tolerance is set for total risk, does it need to be apportioned out somehow to each risk 

category? For example, would it be considered okay if in a year total risk was within tolerance, but 

wildfire risk consumed 99% of the total that year? 

Level 4 recommends that to start, risk tolerance should be set at the highest level that makes sense, either in 

aggregated dollars for total risk or possibly at the attribute level.  Appendix G describes options for setting 

risk tolerance in more detail. 

6.1.2 Developing Risk Tolerance Standards: A Process 

Setting risk tolerance on behalf of the residents of California requires input from the many constituents of 

California. This would include at minimum regulatory agencies, intervenors, and the utilities. There could be 

several public workshops and technical sessions that would include: 

• Training on probabilistic risk assessments, LoRE and CoRE, how to understand a probability 

distribution for post-mitigated risk, and the difference between average and tail risk. 

• Deciding on which tolerances are needed, as discussed in Section 6.1.1. 
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• What levels to set risk tolerance for average risk and tail average risks? This would include debates 

on whether the state should be risk neutral or risk averse, and if averse, how averse? 

Once the initial risk tolerance standards have been established by the utility, the regulatory agencies would 

need to determine if those standards need to be codified and how they would be enforced. This would 

include how quickly a utility would be required to remedy exceeding a risk tolerance, and at what cost. 

The process is a lengthy one—we would expect it could take 12-18 months or longer. In the meantime, 

there is value in having the utilities declare, quantify, and justify the risk tolerance they are using to make 

mitigation decisions. The utilities would have to decide which tolerances are needed as laid out in Section 

6.1.1, which may lead to learning on behalf of the state. How they set tolerance levels for risk neutrality and 

risk aversion will also be instructive. Finally, it will make evaluating RAMPs, WMPs, and other risk 

processes much more transparent.  

6.2 Simple Optimization: Data and Model Requirements 

In parallel with the risk tolerance process, there is work that needs to be done to ensure that the utilities 

have the technical capacity to perform simple optimization. Fortunately, the progress made over the past 

several years makes us feel confident that the raw materials are in place. Level 4 recommends a series of 

workshops on the technical requirements of simple optimization to ensure consistency and proper 

methodology across the utilities. 

Workshop #1. Assessment of current use of probability distributions. It is clear from RAMPs and WMPs 

that the utilities are already working with probability distributions and are storing them. Figure 6-1 is an 

example from PG&E’s 2024 RAMP, which presents Monte Carlo trials for safety risk outcomes, reliability 

risk outcomes, and financial risk outcomes. 

(PG&E-2) 
TABLE 2-17 
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CORE CALCULATIONS(a) 
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1 8 15.23 228 1.88 108 1570 329 1.93 999 1 1,988 1.99 

2 14 15.23 746 3.50 92 1570 278 1.92 831 1 1,651 1.99 

3 8 15.23 228 1.88 111 1570 337 1.93 959 1 1,908 1.99 

4 5 15.23 137 1.80 104 1570 316 1.93 969 1 1,928 1.99 
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5 11 15.23 404 2.41 93 1570 279 1.92 1088 1 2,651 2.44 

6 11 15.23 404 2.41 99 1570 298 1.92 1004 1 2,018 2.01 

7 12 15.23 518 2.83 99 1570 300 1.92 989 1 1,968 1.99 

8 11 15.23 404 2.41 101 1570 307 1.93 818 1 1,627 1.99 

9 9 15.23 259 1.89 102 1570 310 1.93 1192 1 3,431 2.88 

10 12 15.23 518 2.83 100 1570 303 1.93 1116 1 2,860 2.56 

  
Safety CoRE 475 Reliability CoRE 302 Financial CoRE 2,208 

Sum of Attribute Values:  2,985 

 
(a)   The Attribute CoRE is the average of the CoRE per trial for that Attribute. 

Figure 6-1. Sample PG&E simulation results. 

PG&E’s table in Figure 6-1 shows data for each trial in a Monte Carlo simulation, a useful technique for 

building risk models that uses probability distributions to run the simulation. In our Guidance on 

Interrelationships Report, we will cover in detail the proper use of these stored probability distributions, 

including not collapsing them into averages for input into other calculations as being done here.  

For now, it is encouraging that these probability distributions have been developed and are being used. We 

still need to determine the extent to which all the necessary probability distributions exist for risk modeling, 

including those for LoRE. 

Workshop #2. Data libraries. Depending on the granularity of probabilistic models, the data storage 

requirements could be immense, especially if a large number of Monte Carlo simulation trials for each 

distribution must be stored. For example, SCE reports that it simulates matchstick ignitions for 29 million 

ignition points.69 Advanced tools for efficient storage of simulation data such as metalogs70 and sparse 

Monte Carlo71 may be explored.  

Workshop #3. Maintaining probability distribution coherence. A critical feature of storing probability distributions is 

making sure they remain coherent, that is interrelationships between the distributions are preserved. For 

example, suppose several models are based on the relationship between temperature and the likelihood of a 

risk event. If the temperature data point for trial #9 is 102° Fahrenheit, then all the models that include 

temperature should all have 102° for trial #9. This allows us to have a full picture of risk across all models 

on 102° days.  

 

69 SCE 2023-2025 Wildfire Mitigation Plan, page 131. 

70 http://www.metalogdistributions.com/  

71 https://analytica.com/decision-technologies/monte-carlo-simulation-software/ Scroll down to “More efficient variants” 

section. 

http://www.metalogdistributions.com/
https://analytica.com/decision-technologies/monte-carlo-simulation-software/
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Workshop #4. Training in the arithmetic of uncertainty. A key feature of risk modeling is that risks need to be 

aggregated, and if doing this is based on single numbers, it will be aggregated incorrectly. Probability 

distributions can be added (or subtracted or multiplied) as long as done following the arithmetic of 

uncertainty, and proper “order of operations.” 

Topics 1-4 will be covered in greater detail in our Guidance on Interrelationships Report. 

Workshop #5. Tail risk concepts and methodologies. Every probability distribution has a tail, some longer than 

others, such as power laws. There are multiple ways to calculate them, especially tail average (Cvar) with 

some to be preferred over others. 

Workshop #6. Simple optimization techniques. The use of average risk and tail average makes possible linear 

optimization, which is consistent with “simple” and improves computational efficiency. Nonetheless, we 

will need to evaluate what type of optimization is feasible given the substantial number of mitigations under 

consideration, and the large number of data points in each probability distribution. 

Workshop #7. Communicating the results of simple optimization and explaining risk-based decisions. Reporting 

conventions will need to be developed so it is clear to evaluators how the final mitigation selection relates to 

the model results. This will be covered in greater detail in our Risk Mitigation Accountability Reporting 

(RMAR) Report. 
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7 Recommendations 
These recommendations are based on the preceding sections and assume the reader has read and 

understood those sections. Text in red-underline (deletions) and blue-underline (additions) represent 

proposed changes to the Risk-Decision Framework. 

Recommendation 1 (R1): Use of probability distributions. Probability distributions describe the range and 

chance that a set of outcomes occurs within datasets and model results. Risk models must use probability 

distributions as inputs and return probability distributions as outputs. 

• Likelihood is stated as a probability and can be represented in simulation models as a distribution of 

zeros and ones, (the ones representing risk event occurrences72). 

• Consequence is represented as a probability distribution. 

• Risk = LoRE x CoRE and represented as a probability distribution. 

These definitions are consistent with D.24-05-064 Appendix A Rows 10, 11, and 13, with the clarification 

that Likelihood, Consequence, and Risk are based on probability distributions, not single numbers. 

The utilities have made considerable progress in their use of probabilities and probabilistic modeling, but 

single-number representations of LoRE, CoRE, and Risk are still prevalent. An immediate first step should 

be ascertaining how each utility is capturing, storing, and using probability distributions for risk modeling, 

wherein the modeling process is the probability distributions collapsed into single numbers, and what 

utilities must do to replace the use of single numbers in their risk models with the underlying probability 

distributions. 

Building on this we recommend the following updates to definitions: 

Consequence (or Impact): the effect of the occurrence of a Risk Event. Consequences affect Attributes of a 

Cost-Benefit Approach and can be presented in the natural units of the attribute or monetized. 

Consequence is represented as a probability distribution. 

Likelihood or Probability: the chance that an event will occur, quantified as a number between 0% and 

100% (where 0% indicates impossibility and 100% indicates certainty). The higher the Probability of an 

event, the more certain we are that the event will occur. Likelihood of  an event will be represented in 

simulation models as a distribution of zeros and ones whose average is the chance that the event will occur. 

Probability Distribution: the range and chance that a set of outcomes occurs within datasets and model 

results. 

Risk: The potential for the occurrence of an event that would be desirable to avoid, often expressed in terms 

of a combination of various Outcomes of an adverse event and their associated Probabilities. Risk is the 

product of LoRE and CoRE and is represented as a probability distribution. 

 

72 It is possible for LoRE to be expressed as zeros and integers greater than one if multiple risk events per trial are possible. This 

requires additional steps for the LoRE x CoRE calculation. 
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Additionally, Level 4 recommends the following changes to Rows 10, 11, and 13 of D.24-05-064, Appendix 

A: 

10. Identification of 

Potential 

Consequences of 

Risk Event 

The identified potential Consequences of a Risk Event should reflect the unique 

characteristics of the utility and will be represented as a probability distribution. For each 

enterprise risk, the utility will use actual results, available and appropriate data (e.g., Pipeline 

and Hazardous Materials Safety Administration data), and/or Subject Matter Experts (SMEs) 

to identify potential Consequences of the Risk Event, consistent with the Cost-Benefit 

Approach developed in Step 1A. The utility should use utility-specific data, if available. If 

data that is specific to the utility is not available, the utility must supplement its analysis with 

subject matter expertise. Similarly, if data reflecting past results are used, that data must be 

supplemented by SME judgment that considers the Benefits of any Mitigations that are 

expected to be implemented prior to the GRC period under review in the RAMP 

submission. For each enterprise risk, the utility must explain how they derived the probability 

distribution for Consequence of a Risk Event. 

 

11. Identification of 

the Frequency 

Likelihood of the 

Risk Event 

The identified Frequency Likelihood of a Risk Event should reflect the unique characteristics 

of the utility and will be represented in simulation models as a distribution of zeros and ones. 

Likelihood of a Risk Event is the average of the distribution of the ones and zeroes. Frequency 

is the number of risk events over a defined period based on likelihood and can be presented 

for readability. For each enterprise risk, the utility will use actual results and/or SME input to 

determine the annual Frequency of the Risk Event. The utility should use utility-specific data, 

if available. If data that is specific to the utility is not available, the utility must supplement its 

analysis with subject matter expertise. In addition, if data reflecting past results are used, that 

data must be supplemented by SME judgment that considers the Benefits of any Mitigations 

that are expected to be implemented prior to the GRC period under review in the RAMP 

submission. For each enterprise risk, the utility must explain how they derived the probability 

distribution for Likelihood of a Risk Event. 

The utility will consider all known relevant Drivers when specifying the Frequency Likelihood 

of a Risk Event. 

Drivers should reflect current and/or forecasted conditions and may include both external 

actions as well as characteristics inherent to the asset. For example, where applicable, Drivers 

may include the presence of corrosion, vegetation, dig-ins, earthquakes, windstorms, or the 

location of a pipe in an area with a higher likelihood of dig-ins. 

 

13. Calculation of Risk For purposes of the Step 3 analysis for each enterprise risk assessed in the RAMP, pre- and 

post-mitigation risk will be calculated by multiplying the distribution representing Likelihood 

of a Risk Event (LoRE) by the probability distribution of Consequences of a Risk Event 

(CoRE) and represented as a probability distribution. The CoRE is the sum of each of the 

Risk-Adjusted Attribute Values probability distributions monetized using the utility’s full 

Cost-Benefit Approach. 
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Recommendation 2 (R2): Include and define tail risk as a risk measure. In addition to using average risk, 

defined as the average of the probability distribution of risk, tail risk should be formally added for risk 

evaluation. The measure of tail risk should be tail average above a percentile (the percentile to be 

determined by the Commission in consultation with stakeholders). Tail average is preferred over other 

measures because it captures the entire tail of the distribution, is stable, and can be optimized using linear 

programming or other methods. 

Level 4 recommends adding the following definitions to the RDF: 

• Expected Value: the sum of all values in the probability distribution divided by the count of values 

in the probability distribution. Expected Value can be calculated for LoRE, Attributes of CoRE, and 

Risk. 

• Tail Average: the sum of all the values in the probability distribution above a specified percentile 

divided by the count of values within that same specified percentile of the probability distribution. 

For example, Tail Average at the 95th percentile is the sum of all values above the 95th percentile in 

the probability distribution divided by the count of values above the 95th percentile in the probability 

distribution. Tail average can be calculated for Attributes of CoRE and Risk. 

• Tail Risk: a measure of low probability, high consequence occurrences, which are represented in the 

extremities of the probability distribution, known as the tail. The tail is typically defined as the values 

above a specified percentile, such as the 95th percentile. Tail risk can be evaluated for Attributes of 

CoRE and Risk.  

Based on R2, Level 4 recommends that D.24-05-064, Appendix A Row 5 be rewritten as 

5. Cost-Benefit 
Approach 
Principle 4 – Risk 
Assessment 

When Attribute Levels that result from the occurrence of a Risk 
Event are uncertain., assess the uncertainty in the Attribute Levels 
by using expected value or percentiles, or by specifying well-
defined probability distributions, from which expected values and 
tail values can be determined. This uncertainty must be 
represented as a probability distribution and must be described by 
using the Expected Value of the probability distribution and the 
tail average above a specified percentile of the distribution. 

Monte Carlo simulations, other simulations (including calibrated 
subject expertise modeling), and output from machine learning 
models, among other tools, may be used to satisfy this principle.  

Recommendation 3 (R3): Evaluation based on portfolios of mitigations. Risk reduction evaluation should be 

based on portfolios of risk mitigations to account for interrelationships between mitigations. Portfolio 

selection is well-suited to optimization (see R4 below). 

Level 4 recommends adding the following definition related to R3: 

Mitigation Portfolio: a collection of one or more risk mitigations for reducing the risk of a given enterprise 

risks. Costs, benefits, and benefit-cost ratios can be calculated for each portfolio, and portfolios can be 

compared to one another. 
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Mitigation Group: the combining of two or more mitigations that exhibit either synergy, meaning the 

mitigations result in mutually reinforcing risk reduction efficiency, or diminishing returns, meaning as one 

mitigation reduces risk it limits the efficiency of the other mitigation to reduce risk. 

Based on R3, Level 4 recommends that D.24-05-064, Appendix A include a new row after Row 25 and 

before Row 26 on portfolio construction, as well as revisions to Row 26. 

25.1 Portfolios of Risk 
Mitigations  

Utilities must construct portfolios of risk mitigations for each Risk 
as identified in Row 8. Mitigations in each portfolio should 
account for interrelationships between them, such as mutual 
exclusivity, synergies, and diminishing returns. 

• Mutually exclusive mitigations must be avoided, only one 
or the other can exist in the same portfolio. 

• Synergies and diminishing returns can be captured by 
combining two or more mitigations, called a mitigation 
group. Synergies or diminishing returns can be calculated 
for the mitigation group. 
 
For example, a wildfire mitigation portfolio could include 
for a given circuit segment: covered conductor as 
mitigation, vegetation management as a mitigation, or 
covered conductor with vegetation management as a 
mitigation—but not covered conductor and vegetation 
management as separate mitigations since their benefits 
are not additive (may exhibit diminishing returns). 

26 Mitigation 
Strategy 
Presentation in 
the RAMP and 
GRC 

The utility’s RAMP filing will provide a ranking of all RAMP 
Mitigations by Cost-Benefit-Cost rRatios. Additionally, the utility 
must present a set of optimal portfolios for reducing each 
enterprise risk. Mitigation Groups defined in Row 25.1 can also 
be ranked within each portfolio. The utility must justify the 
portfolio selection, optimization, and structure of Mitigation 
Groups.  

In the GRC, the utility will provide a ranking of Mitigations by 
Cost-Benefit-Cost Ratios, as follows: (1) For Mitigations 
addressed in the RAMP, the utility will use risk reduction 
estimates, including any updates, and updated costs to calculate 
Cost-Benefit-Cost Ratios and explain any differences from its 
RAMP filing; (2) For Mitigations that require Step 3 analysis 
under and consistent with Row 28, the utility will include the 
Cost-Benefit-Cost Ratios, calculated in accordance with Step 3, in 
the ranking of Mitigations by Cost-Benefit-Cost Ratios. 

In the GRC, the utility will provide an updated presentation of a 
set of optimal portfolios for reducing each enterprise risk if an 
update is necessary. Any differences in the set of optimal 



I NC O RP O RAT IN G  R I SK  T O L ERA NC E  AN D  S I MPL E  O PT I M I ZAT I ON  IN T O T H E  RD F  

 

L E V E L  4  VE NT UR E S ,  I NC ,                    F INA L  R E PO R T  1 0/ 2 0 2 4  5 5  

portfolios from the RAMP filing must be clearly explained by the 
utility in its GRC filing.  

In the RAMP and GRC, the utility will clearly and transparently 
explain its rationale for selecting Mitigations for each enterprise 
risk and for its selection and optimization of its overall portfolio 
of Mitigations for each enterprise risk. The utility must explain 
how the Benefit-Cost Ratios constraint and other constraints 
factored into the utility’s portfolio selection. The utility is not 
bound to select its Mitigation strategy based solely on the Cost-
Benefit Ratios produced by the Cost-Benefit Approach. 

Mitigation selection and Mitigation Portfolio optimization can be 
influenced by Benefit-Cost Ratios and other factors including, but 
not limited to, funding, labor resources, technology, planning and 
construction lead time, compliance requirements, Risk Tolerance 
thresholds, operational and execution considerations, and 
modeling limitations and/or uncertainties affecting the analysis. In 
the RAMP and GRC, the utility will explain whether and how any 
such factors affected the utility’s Mitigation selections. In the 
RAMP and GRC, the utility must also implement and justify a 
systematic way to integrate these other factors into the 
optimization of its Mitigation Portfolios. 

GRC Post-Test Year Reporting: All Controls and Mitigation 
programs must include Benefit-Cost Ratios in each of the GRC 
post-test years as well as aggregate Benefit-Cost Ratios for the 
entire post-test year period and the entire GRC period, by 
Tranche. 

 

Recommendation 4 (R4): Portfolio selection based on simple optimization instead of ranking. Optimization ensures 

choosing the best portfolio of mitigations given the objective and constraints. It can, however, be a 

complex, computationally intensive, and time-consuming process. There are ways to simplify the 

optimization process such as limiting the number of optimization scenarios and choosing objectives that can 

be optimized using linear programming, which is computationally efficient and speedy compared to non-

linear methods. There are three components to our simple optimization recommendation: 

• Stochastic optimization: Stochastic optimization is optimizing using the entire probability distributions, 

not single numbers. It typically returns an efficient frontier and enables optimizing for average risk 

and tail risk (see next bullets). Linear programming is one method for performing stochastic 

optimization, but the utilities may use their preferred method. 

• Efficient frontier: An efficient frontier is the set of optimal and near-optimal portfolios based on a two-

dimensional trade-off, such as risk reduction versus mitigation cost. Efficient frontiers enable trade-

off analysis and alternative analysis as defined in D.24-05-064, Appendix A Page A-3. 
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• Two scenarios: Two efficient frontiers can be created, one for each of two stochastic optimization 

scenarios: 

o Scenario 1. Minimize average post-mitigation risk73 for various mitigation cost levels. 

o Scenario 2. Minimize tail average post-mitigation risk for various mitigation cost levels.  

We acknowledge it may be necessary to start with optimizing average risk (scenario 1) and incorporating 

tail risk (scenario 2) in a later cycle, depending on the utility’s expertise in stochastic optimization. 

Recommendation 5 (R5): Calculation of risk tolerance. Risk tolerance should be modeled as an exceedance 

curve and calculated by applying the risk neutral or risk averse scaling function to a constant risk exceedance 

curve.  

• Risk tolerance is the maximum amount of residual, or post-mitigated, risk that an entity or its 

stakeholders are willing to accept after the application of risk Control or Mitigation. Risk tolerance 

can be influenced by legal or regulatory requirements.  

• Exceedance curves depict the maximum acceptable Consequence for a given probability of a risk event. 

Risk attitudes such as risk neutrality or risk aversion can be applied to exceedance curves by applying 

an appropriate scaling function. After the application of the scaling function, an exceedance curve is 

the probabilistic representation of risk tolerance. 

• The Constant Risk Exceedance Curve74 is the curve that results in the same Expected Value of Risk for 

every probability. For example, for an Expected Value of $10 risk, the Constant Risk Exceedance 

Curve would include the points 10% Likelihood of $100 Consequence; 1% Likelihood of $1,000 

Consequence; and 0.1% Likelihood of $10,000 Consequence. 

This recommendation significantly modifies D.24-05-064, Appendix A Row 7, which applies the scaling 

function to an attribute Consequence. R5 enables the comparison of the actual probability distribution of 

Consequence to risk tolerance in the form of a scaled exceedance curve. The scaling function is more 

intuitively applied to the constant risk exceedance curve for an attribute, not to the attribute Consequence 

itself. 

Based on R5, Level 4 recommends adding the following definitions to the RDF: 

Exceedance Curve: A function that depicts the maximum level of acceptable Consequence for an attribute 

for a given probability that the Risk Event will occur. 

Constant Risk Exceedance Curve: the curve that results in the same Expected Value of Risk for every 

probability. For example, for an Expected Value of $10 risk, the Constant Risk Exceedance Curve would 

include the points 10% Likelihood of $100 Consequence; $1% Likelihood of $1,000 Consequence; and 

0.1% Likelihood of $10,000 Consequence. 

 

73 Defined as residual risk in D.24-05-064, Appendix A, page A-5 

74 Also known as iso-risk curve. 

https://citeseerx.ist.psu.edu/document?doi=bef8e5125d5dcede72b599c97c6644e520ed6520&repid=rep1&type=pdf See page 7. 
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Based on R5, we recommend that D.24-05-064, Appendix A, a new Row be added after Row 6 and Row 7 

be revised as follows: 

6.1 Cost-Benefit 
Approach 
Principle 6: 
Attribute 
Exceedance 
Curves 

Establish a Constant Risk Exceedance Curve for each attribute 
relevant to a given risk event. Each Attribute Level Constant Risk 
Exceedance Curve must depict the maximum level of acceptable 
Consequence for the associated probability that a given 
Consequence occurs. Each point on the curve represents the same 
Expected Value of risk. It will inform the establishment of the 
Constant Risk Exceedance Curves for Risk Events in Row 13.1. 

7 Cost-Benefit 
Approach 
Principle 6 – 
Applying Risk 
Scaling Function 
to the Attribute 
Exceedance 
Curves 

Apply a Risk Scaling Function to the Monetized Levels of an 
Attribute or Attributes (from Row 6) to obtain Risk-Adjusted 
Attribute Levels. For each enterprise risk included in the RAMP, 
the utility may apply a Scaling Function reflecting Risk Attitude to 
the Attribute Level Constant Risk Exceedance Curve (from Row 
6.1) to obtain a Scaled Attribute Exceedance Curve. The Scaled 
Attribute Exceedance Curve (which represents Risk Tolerance, 
see Row 13.1) is obtained by dividing the Attribute Level 
Constant Risk Exceedance Curve by the Scaling Function.  

The Risk Scaling Function is an adjustment made in the risk 
model due to different magnitudes of Outcomes, which can 
capture aversion or indifference towards those Outcomes. 

The Risk Scaling Function can be linear or convexly non-linear. 
For example, the Risk Scaling Function is linear to express 
indifference if avoiding a given change in the Monetized Attribute 
Level does not depend on the Attribute Level. Alternatively, the 
Risk Scaling Function is convexly non-linear to express aversion if 
a change in the Attribute level results in an increasing rate of 
change in the Risk-Adjusted Monetized Attribute Level as the 
Level of the Attribute increases. 

When completing Rows 5 and 24 in the RDF, if a utility chooses 
to address tail risk using the power law or other statistical 
approach and chooses to present Risk-Adjusted Attribute Levels 
by relying on a convex scaling function, then it must supplement 
its analysis by also presenting Risk-Adjusted Attribute Levels by 
relying on a linear scaling function. 

 

13.1 Risk Tolerance Utilizing the Attribute Level Constant Risk Exceedance Curves 
from Row 6.1, establish a Constant Risk Exceedance Curve for 
each enterprise risk assessed in the RAMP. The Constant Risk 
Exceedance Curve must depict the maximum level of acceptable 
Risk for the associated probability that a given Risk Event occurs. 
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Since each point on the curve represents the exact same level of 
risk, it is called the Constant Risk Exceedance Curve. 

The goal of the RDF is to reduce Attribute Consequence Levels 
below each Risk Tolerance, which is the Scaled Attribute 
Exceedance Curve. 

No later than one month after the utility’s pre-RAMP workshop, 
the utility must present its preliminary Attribute Level Exceedance 
Curves and Constant Risk Exceedance Curve for each enterprise 
risk assessed in the RAMP to the California Utility Risk Tolerance 
Stakeholder (CURTS) Forum. Within 21 days of the CURTS 
Forum discussion, stakeholders of the CURTS Forum should 
make recommendations to the utility for ensuring that the 
Attribute Level Exceedance Curves and Constant Risk 
Exceedance Curve appropriately represent the risk tolerance of 
the residents of California. The utility must submit these 
recommendations with its RAMP Application along with a 
justification explaining why the utility did or did not integrate the 
CURTS Forum recommendations into its RAMP Application. 

Recommendation 6 (R6): Establish risk tolerance representing the residents of California. Risk tolerance is the 

benchmark that determines whether utility risk levels are acceptable or not. Developing a set of acceptable 

risk levels that represents the risk tolerance of the residents of California requires an inclusive process that 

should begin as soon as possible. The process should include the following components: 

1. Participants. Establish a forum of key stakeholders whose consensus on risk tolerance would 

represent the residents of California. This will be called the California Utility Risk Tolerance 

Stakeholder (CURTS) Forum. The forum should be established by July 2025 with the goal of 

informing the SCE 2026 RAMP (see # 2 below). 

2. Timing, pacing, and sequencing. Develop a timeline for the implementation of risk tolerance standards. 

Initial implementation should be SCE 2026 RAMP, PG&E 2028 RAMP, and SEMPRA 2029 

RAMP.  

3. Number of tolerances to be set. Determine which tolerances are needed, for example, one for each 

attribute and for which risks.  

4. Interim tolerances determined by each utility. While the process for determining State-wide tolerance levels 

is playing out, requires each utility to declare and justify a risk tolerance, and evaluate risk reduction 

based on this risk tolerance. See #5 for how many risk tolerances the utilities need to declare in the 

first cycle. 

5. Phased approach. Consider initially setting risk tolerance for one risk event, such as wildfire, and for 

each attribute, and then adding tolerance if desirable over time. 

6. Long-term vision. With some experience working with risk tolerance and simple optimization, discuss 

whether to move ahead with more sophisticated frameworks such as ALARP. 

Based on R6, we recommend that D.24-05-064, Appendix A, a new Row between 13 and 14 be added: 
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13.2 Test Year Risk 
Tolerance 

The utility must determine how much risk can be reduced in the 
next GRC cycle to approach the Constant Risk Exceedance Curve 
or Scaled Exceedance Curve for each enterprise risk assessed in 
the RAMP filing. 
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8 Appendices 

8.1 More Information and Details for Selected Topics 

8.1.1 Appendix A: The Arithmetic of Uncertainty 

Foremost among the first principles of risk tolerance and simple optimization of utility risk reduction is 

“don’t use single numbers as inputs to risk models.” Single numbers are prevalent in risk modeling because 

they are easy to use. Everyone knows how to add, subtract, and multiply single numbers according to the 

rules of arithmetic. 

Correct risk modeling, however, requires the use of probability distributions to avoid serious errors, which 

are described in subsequent appendices. Probability distributions can also be added, subtracted, and 

multiplied according to the arithmetic of uncertainty75 (along with other mathematical operations, but these 

are the most common ones), which allows them to be used as inputs in risk models. 

The arithmetic of uncertainty is defined as performing arithmetic on one or more probability distributions 

with the calculations resulting in a new probability distribution. 

Technically, in mathematics, this is called “functions of random variables.”76 Historically, this meant 

analytical solutions that could be applied to only a few probability distributions and had limited practical use. 

In the 1980s when computers became sufficiently powerful, financial engineers in banking and insurance 

developed proprietary methods for applying the arithmetic of uncertainty. In the last ten years, personal 

computers and software such as MS Excel have become powerful enough to perform the arithmetic of 

uncertainty, and ProbabilityManagement.org has created an open standard to further enable it.77  

Uncertainty can be represented as probability distributions displayed as a list of numbers. In Excel or any 

programming language, the list can be entered in a column. Two probability distributions can be entered as 

two columns, as in Figure 8-1. Let’s assume these distributions are drawn from a risk model of cybersecurity 

events at two data centers. 

 

 

 

 

75 For more on arithmetic of uncertainty, see “The Arithmetic of Uncertainty,” Chance Age Webinar Services: Probability 

Management, https://www.probabilitymanagement.org/arithmetic-of-uncertainty?rq=arithmetic  

76 See Gordon Zitkovic, “Lecture 4: Functions of Random Variables,” lecture in Mathematical Statistics, last updated September 

25, 2019. https://web.ma.utexas.edu/users/gordanz/notes/functions_color.pdf  

77 Sam L. Savage, Chancification: How to Fix the Flaw of Averages, (published by author 2021). Chapter 3. 

https://www.probabilitymanagement.org/arithmetic-of-uncertainty?rq=arithmetic
https://web.ma.utexas.edu/users/gordanz/notes/functions_color.pdf
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  Distribution 1 Distribution 2 
Trial 1 3 3 
Trial 2 4 3 
Trial 3 2 5 
Trial 4 2 1 
Trial 5 3 4 
Trial 6 5 4 
Trial 7 6 6 
Trial 8 2 2 
Trial 9 4 3 
Trial 10 2 3 
Trial 11 3 4 
Trial 12 1 2 

Figure 8-1. Two probability distributions are represented as a list or column of numbers. 

Each row is a trial, perhaps representing a modeled year, taken from a large risk simulation. In trial 3, there 

were 2 risk events in Distribution 1 and 5 risk events in Distribution 2. What if we wanted to know the total 

risk between the two data centers? Those unfamiliar with the arithmetic of uncertainty might fall back on 

the more familiar grounds of single numbers and calculate, then sum, the averages of the two distributions, 

3.1 + 3.3 = 6.4. 

However, the arithmetic of uncertainty allows adding the two distributions as follows: 

 

  Distribution 1 Distribution 2 

Distribution 1 
+ Distribution 

2 
Trial 1 3 3 6 
Trial 2 4 3 7 
Trial 3 2 5 7 
Trial 4 2 1 3 
Trial 5 3 4 7 
Trial 6 5 4 9 
Trial 7 6 6 12 
Trial 8 2 2 4 
Trial 9 4 3 7 
Trial 10 2 3 5 
Trial 11 3 4 7 
Trial 12 1 2 3 

Figure 8-2. Probability distributions can be added, creating a new probability distribution. 

Average: 

Distribution 1 = 3.1 

Distribution 2 = 3.3 

On Trial 3, Distribution 1 

+ Distribution 2 = 2+5=7 
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Each trial is summed, creating the new distribution (i.e., Distribution 1 + Distribution 2). We can calculate 

the average of the new distribution, which happens to be 6.4—the same as the single number approach, 

though this is not always so as we shall soon see. But even in the case where the average of the new 

distribution does not differ from the single number approach, on trial 7 the total risk is 12, almost twice the 

average, and on trial 6 the total risk is 9, nearly 50% more than the average. This critical tail risk information 

is destroyed when the distributions are collapsed into single numbers. 

Here is a visualization of the arithmetic of uncertainty in action: 

 

Figure 8-3. Distributions as histograms. 

Distribution 1 is different from Distribution 2 and adding them together creates a new distribution with an 

entirely different shape! It is unnecessary to “name” the distributions based on classical statistics. Is 

Distribution 1 lognormal? It doesn’t matter. Is Distribution 2 normal? It doesn’t matter. Nobody would’ve 

known what the sum of the distributions, Distribution 1+2, would look like. 

Another key point is that the new Distribution 1 + 2 can be used in further risk calculations, such as 

calculating the distribution of customers impacted by the risk events.  

So far, we have demonstrated how the arithmetic of uncertainty works for adding probability distributions. 

However, risk modeling is often multiplicative; no problem, we can also take the product of probability 

distributions. 

Let’s make a slight change in our example—suppose Distribution 1 is a number of risk events as before but 

now Distribution 2 is a consequence (for simplicity assume that all events on a trial will have the same 

consequence). We are interested in total risk = events x consequence, which is depicted in Figure 8-4. 
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  Distribution 1 Distribution 2 
Distribution 1 x 
Distribution 2 

Trial 1 3 3 9 
Trial 2 4 3 12 
Trial 3 2 5 10 
Trial 4 2 1 2 
Trial 5 3 4 12 
Trial 6 5 4 20 
Trial 7 6 6 36 
Trial 8 2 2 4 
Trial 9 4 3 12 
Trial 10 2 3 6 
Trial 11 3 4 12 
Trial 12 1 2 2 

Figure 8-4. Distribution 1 x Distribution 2. 

Multiplying two probability distributions also creates a new probability distribution and Distribution 1 x 

Distribution 2 looks like this: 

 

Figure 8-5. Distribution 1 x Distribution 2 histogram. 

We are certain that this distribution does not have a name in classical statistics, and few people would’ve 

guessed its shape before performing the arithmetic. Fortunately, modern computing doesn’t care about 

names, and it calculates the shape for us. As before, this new distribution may be used in subsequent risk 

calculations, such as aggregating risk across all risk events. 

A final comment on Distribution 1 x Distribution 2: Using the single number approach, average risk = 

average of Distribution 1 x average of Distribution 2 = 3.1 x 3.3 = 10.2. The average of Distribution 1 x 
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Distribution 2 = 11.4. This is a case where using single numbers doesn’t even get the averages right. As 

before, using single numbers fails to alert anyone that there is a 1/12 chance of risk = 36, more than 3 times 

the average. 

The arithmetic of uncertainty plays a critical role in risk modeling using the FAIR ontology, where Risk = 

Likelihood of Risk Event x Consequence of Risk Event, or LoRE x CoRE. Unfortunately, FAIR models are 

typically based on single numbers, for example, LoRE 40% x CoRE $200 = Risk $80. The good news is the 

FAIR approach is fully compatible with probability distributions and the arithmetic of uncertainty, as in 

Figure 8-6. 
 

  LoRE CoRE Risk 
Trial 1 0 $100  $0 
Trial 2 1 $200  $200 
Trial 3 0 $50  $0 
Trial 4 1 $350  $350 
Trial 5 0 $500  $0 
Trial 6 0 $300  $0 
Trial 7 0 $25  $0 
Trial 8 1 $150  $150 
Trial 9 1 $100  $100 

Trial 10 0 $225  $0 
        

Average 40% $200 $80 
P90th%   $365 $215 

Figure 8-6. FAIR ontology and arithmetic of uncertainty. 

LoRE, CoRE, and Risk can be visualized as probability distributions shown in Figure 8-7. In addition to 

average risk, tail risk can be computed from the distributions, which is impossible when using single 

numbers. 

 

Figure 8-7. LoRE, CoRE, LoRE x CoRE histograms. 

The arithmetic of uncertainty requires preserving probability distributions at every step. Every output 

probability distribution is a potential input distribution for a future calculation. Once a summary statistic 

such as an average or a percentile is calculated that number may be used in reports or dashboards but can 

never be used again as an input to a model. 
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We have begun to touch on a major problem with using single numbers instead of the arithmetic of 

uncertainty when modeling risk, known as the Flaw of Averages, which is the topic of the next appendix. 

8.1.2 Appendix B: The Flaw of Averages 

The Flaw of Averages is the set of systematic errors that occurs when people use single numbers (usually 

averages) to describe uncertain future quantities.78 When these single numbers are used as inputs to complex 

models, they can produce erroneous results. The Flaw of Averages is magnified when model inputs are 

multiplied, exponentiated, interrelated, or some combination of the three. 

A wildfire risk model example will illustrate the Flaw of Averages. It combines all three Flaws of Average 

magnifiers—multiplication, exponentiation, and interrelationships. Suppose we are modeling the impact of 

wind speed on wildfires, where higher windspeeds are associated with an increased likelihood of ignition and 

increased wildfire consequences, as shown in Figure 8-8. 

 

 

Figure 8-8. Simple wildfire factor model. 

 

78 See https://johnmjennings.com/beware-the-flaw-of-averages/ . Also, Sam L. Savage, The Flaw of Averages. (John Wiley & Sons, 

2009). 

https://johnmjennings.com/beware-the-flaw-of-averages/
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• Wind Speed is typically modeled as a Weibull distribution, which is exponentiated and often results 
in a “fat-tailed” distribution. 

• Wildfire consequence is often modeled as a power law, which is exponentiated and results in an 
extreme “fat-tailed” distribution. 

• In the FAIR ontology, risk is multiplicative—the product of likelihood and consequence. 

• Likelihood and consequence share the same cross-cutting risk factor—windspeed—and are 
therefore interrelated. 

 The distributions of our hypothetical model are visualized in Figure 8-9 below. 

 

 

Figure 8-9. Factor model distributions. 

The interrelationship between likelihood and consequence produces a Spearman rank correlation of roughly 

0.5, as shown in Figure 8-10. A correlation of 0.5 is moderate to high; as wind speeds increase, 

the likelihood of ignition increases as do the consequences of a wildfire risk event. 
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Figure 8-10. Interrelationship between wind speed and consequence. 

As discussed in the arithmetic of uncertainty in Appendix A, these distributions serve as the inputs to our 

wildfire model, which produces a distribution of wildfire risk as shown in Figure 8-11 below. While the 

average is $30.56, up until around the 92 percentile, the Risk is zero and then increases rapidly. The 99th 

percentile risk is $750.57, about 25x the average. 
 

  Risk 
Average $30.56 
Median $0.00 

92% $24.97 
95% $202.05 
99% $753.57 

99.5% $985.88 
99.9% $1,489.40 

Figure 8-11. Distribution of wildfire risk, descriptive statistics. 

Figure 8-11 results are calculated from the distribution of risk, based on a Monte Carlo Simulation of 20,000 

trials. Figure 8-12 below examines alternative risk calculations based on LoRE and CoRE: 

 

Risk Calculations LoRE CoRE Risk 
Single Number Input (a) 7.4% $147.22 $10.86 
Avg LoRE x Avg Core (b) 8.3% $200.96 $16.58 

Avg (LoRE*CoRE) (c)     $30.56 
        

Figure 8-12. LoRE, CoRE, and Risk Calculations. 
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• The most common—and incorrect—alternative is to take a single number, typically the average, and 
plug it into a model. This approach (row (a) in Figure 8-12) takes the average windspeed and plugs it 
into the LoRE and CoRE models, and then multiplies LoRE and CoRE model output as single 
numbers to calculate risk.  

• Less common, but also incorrect, the distributions of LoRE and CoRE are created and the single 
number averages from those distributions are then multiplied to calculate risk, as in row (b).  

• The correct approach, in row (c), is to multiply the distributions for LoRE and CoRE, and take the 
average from the new distribution. 

None of this would matter if these alternative methods produced the same or even related results. They 

often do not. In our hypothetical example, the single-number approach understates average risk by a factor 

of 2.8x. Multiplying the averages of LoRE and CoRE understates average risk by 84%. 

Given the construct of risk models—the product of LoRE and CoRE, the exponentiated (fat-tailed) 

distributions, and interrelationships between the inputs—the incorrect approaches will systematically 

underestimate risk. 

If these errors aren’t bad enough, it gets worse. Once the single numbers are used in the calculations, it 

becomes impossible to evaluate other measures of risk such as tail risk. In the first two calculations, it is no 

longer possible to evaluate risk at the 95th percentile or the 99th percentile. The evaluator would never know 

that there was a 5% chance of risk more than 6x the average, or a 1% chance of risk 25x the average. 

8.1.3 Appendix C: The Flaw of Extremes 

A close relation to the Flaw of Averages is the Flaw of Extremes, which results from combining or 

aggregating abnormal results, such as 90th percentiles, minimums, or maximums, or other results from the 

tails of probability distributions.79 For example, adding the 95th percentile from two different distributions 

will not produce the 95th percentile from the aggregated distribution unless they are perfectly correlated. 

For example, suppose a utility is developing a plan to reduce risk for its portfolio of five hydropower dams. 

The utility has developed probabilistic risk models for each dam and wishes to address tail risk at the 98th 

percentile, equivalent to a 1-in-50-year event. The five dams are geographically dispersed from each other 

and share no common cross-cutting risk factors, and their pre-mitigated risks are considered independent. 

The pre-mitigated risk levels for each dam are represented in Figure 8-13. 

 

79 Sam L. Savage, The Flaw of Averages. (John Wiley & Sons, 2009). Chapter 17. 
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Figure 8-13. Pre-mitigated risk levels at 98th percentile for 5 dams. 

The left-hand chart shows the 98th percentile pre-mitigated risk levels for each of the five dams. The right-

hand chart shows the aggregated risk level. The light green (top) bar on the right-hand chart is the result 

produced by adding up the 98th percentile risk level for each of the five dams. The dark green bar on the 

right-hand chart adds up the probability distributions of pre-mitigated risk levels for the five dams and then 

takes the 98th percentile, which is the correct approach.  

Why is adding the individual 98th percentiles incorrect? It assumes that the 98th percentiles all occur at the 

same time (or on the same Monte Carlo simulation trial), which if the risks are independent, is extremely 

unlikely. In this example, the risk calculated by adding the 98th percentile can be expected to occur only once 

every 250 years (99.6%). Figure 8-14 compares the Flaw of Extremes (the sum of the 98th percentile) with 

properly applying the arithmetic of uncertainty (the 98th percentile of the sum).  

 

  Risk Actual Pth% Frequency 
Sum of P98th% $762.37 99.6% 1 in 250 years 
P98th% of Sum $413.02 98.0% 1 in 50 years 

        
Figure 8-14. The Flaw of Extremes vs. the arithmetic of uncertainty. 

 

The aggregated pre-mitigated risk level is overstated by 85%, which may lead to substantial over-investment 

in mitigations.  

This example demonstrates the Flaw of Extremes by aggregating only five risks. The Flaw scales rapidly as 

the number of risks being aggregated increases. Once again, avoiding the Flaw of Extremes depends on 

properly applying the arithmetic of uncertainty to probability distributions first, and only then calculating 

summary statistics such as averages or percentiles.  
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8.1.4 Appendix D: Likelihood of Simultaneous Failure (LoSF) 

Catastrophic risk events are seldom the result of a single failure. In most cases, there are multiple failures 

simultaneously, which can be thought of as a “perfect storm.” We call it “likelihood of simultaneous failure” 

or LoSF.80 Understanding if and when LoSF occurs can be the key to effective risk mitigation. 

Determining LoSF is impossible if risks are reduced to single numbers. Once again, the arithmetic of 

uncertainty provides us with a way to uncover LoSF.  

Suppose we are evaluating two independent risks, e.g., wildfire and cyber. They are independent because 

they do not share any cross-cutting risk factors. For simplicity, the wildfire risk and cyber risk have the same 

probability distribution. The sum of the two independent distributions is shown on the far-right hand chart 

in Figure 8-15. 

 

Figure 8-15. Independent distribution of hypothetical wildfire and cyber risk. 

Suppose we are also evaluating wildfire risk and hydropower risk, which are not independent. They are 

interrelated because wildfires can cause damage to reservoirs and dams.81 We will assume that hydropower 

also has the same probability distribution as wildfire (and cyber), and the interrelated wildfire and 

hydropower risk is shown in Figure 8-16. 

 

Figure 8-16. Interrelated wildfire and hydropower hypothetical risk. 

The aggregated wildfire and hydro risk (far-right hand chart) has a significantly longer tail. What is the root 

cause? Let’s look at the probability distributions depicted as columns of numbers in Figure 8-17 to find out.  

 

80 We attribute the term likelihood of simultaneous failure and LoSF to Dr. Sam Savage. 

81 For an example of wildfire consequence impact on hydropower and other clean energy capacity, see 

https://www.ncpa.com/wp-content/uploads/2018/01/Issue_Paper_Wildfires.pdf   

https://www.ncpa.com/wp-content/uploads/2018/01/Issue_Paper_Wildfires.pdf
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  Independent Risks     Interrelated Risks 
                  
  WF Risk Cyber Risk Total      WF Risk Hydro Risk Total  
Trial 1 $0 $500 $500   Trial 1 $0 $500 $500 
Trial 2 $0 $0 $0   Trial 2 $0 $0 $0 
Trial 3 $100 $0 $100   Trial 3 $100 $0 $100 
Trial 4 $0 $300 $300   Trial 4 $0 $0 $0 
Trial 5 $0 $0 $0   Trial 5 $0 $0 $0 
Trial 6 $500 $0 $500   Trial 6 $500 $300 $800 
Trial 7 $0 $0 $0   Trial 7 $0 $0 $0 
Trial 8 $300 $0 $300   Trial 8 $300 $100 $400 
Trial 9 $0 $0 $0   Trial 9 $0 $0 $0 
Trial 10 $0 $100 $100   Trial 10 $0 $0 $0 
                  
Average $90 $90 $180   Average $90 $90 $180 
                  
P90th%     $500   P90th%     $800 
                  

Figure 8-17. Distribution detail of independent and interrelated risks. 

The tables show the probability distributions for each risk as a set of Monte Carlo simulation trials. Each 

risk occurs on 3 of 10 trials for a likelihood of 30%, and each averages $90. The combined risk for the 

independent risks and interrelated risks are also the same, $180. As we saw on the histograms, however, the 

tail risk at the 90th percentile is much higher for the interrelated risks, $800 vs. $500. Examining the trials 

shows why: the interrelated risks occur simultaneously on trial 6 and trial 8. Perfect storm! For the 

independent risks, there are no trials in which both risks occur. 

While these examples are highly illustrative, interrelated risks are more likely to occur simultaneously and are 

more likely to produce extreme events.  

How might understanding LoSF inform risk mitigation? In Japan, it has been well understood for decades 

that earthquakes can damage critical infrastructure such as power for nuclear reactors, and regulators have 

required backup generators typically installed in the basements of nuclear plants. It was also well known that 

earthquakes can cause tsunamis. Regulators failed to evaluate what happens when an earthquake knocks out 

power and causes a tsunami at the same time. In March 2011, such an earthquake occurred. The backup 

generators in the basements survived the initial quake but were flooded by the tsunami and incapacitated, 

which contributed to the meltdown of the reactor.82 Had LoSF been understood, might the backup 

generators have been placed in a higher location?83 

 

82 See “Fukushima Daiichi Accident,” World Nuclear Association, last updated April 29, 2024, https://world-

nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-daiichi-accident  

83 In fact, one generator in a higher location was undamaged by flooding (see above footnote). 

https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-daiichi-accident
https://world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-daiichi-accident
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8.1.5 Appendix E: Relationship Between Risk Scaling and Risk 

Tolerance 

In section 4.2.2, we describe risk scaling as the quantification of risk attitude and risk tolerance as the 

probabilistic representation of risk attitude. Risk scaling and risk tolerance are related, that is the same risk 

aversion (or risk-seeking) function can be applied to both and produce the same results. There can be some 

confusion when moving between risk scaling and risk tolerance since risk aversion is represented as a 

convex curve for the former and concave for the latter. 

Risk scaling. A risk scaling function is applied to the risk-neutral curve to make “perceived” risk higher than 

actual risk, as in Figure 8-18. By definition, for the risk-neutral curve (the blue line) perceived risk is the 

same as actual risk—actual risk of 1 is perceived as 1, actual risk of 100 is perceived as 100, and actual risk 

of 10,000 is perceived as 10,000.  

 

Figure 8-18. Risk-averse vs. risk-neutral scaling function. 

For the risk-averse scaled risk (green curve), the perceived risk is higher than the actual risk at each point. 

The curve is upward-sloping, or convex. The same curve can be shown in log-log space in Figure 8-19, 

which will make comparing multiple curves easier. For the risk-averse curve, the interpretation is the 

same—perceived risk after scaling is higher than actual risk. 
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Figure 8-19. Scaling functions are presented in logarithmic space for readability. 

Risk Tolerance. Rather than adjusting actual risk, risk tolerance sets the level of acceptable risk, to which 

actual risk can be compared. The risk-averse tolerance will be set below the risk-neutral line in Figure 8-20. 

 

Figure 8-20. Applying risk scaling functions to risk tolerance. 

For a given risk-averse function, the risk tolerance line (dotted green) is the mirror image of the averse 

scaled risk line around the risk-neutral line. This is why the risk-averse curve in risk scaling is convex, but for 

risk tolerance it is concave. Mathematically, the relationship is shown in Figure 8-21.  
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Relationship between risk-averse scaled risk function and risk tolerance: 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑅𝑖𝑠𝑘

𝐴𝑐𝑡𝑢𝑎𝑙 (𝑁𝑒𝑢𝑡𝑟𝑎𝑙) 𝑅𝑖𝑠𝑘
=  

𝐴𝑐𝑡𝑢𝑎𝑙 (𝑁𝑒𝑢𝑡𝑟𝑎𝑙) 𝑅𝑖𝑠𝑘

𝑅𝑖𝑠𝑘 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
 

25

10
=

10

4
   

Figure 8-21. Mathematical relationship between scaled risk and scaled risk tolerance. 

Risk Tolerance, probabilistic. Risk tolerance is often represented probabilistically as exceedance curves. This 

means that risk tolerance and scaled risk, which are plotted on the y-axis above, move to the x-axis, and the 

y-axis becomes the cumulative probability distribution as shown in Figure 8-22 below. 

 

Figure 8-22. Transforming risk scaling function to exceedance curve. 

The exceedance curve rotates the chart 90 degrees, preserving the “mirroring” of the tolerance and scaled 

curves. Two key differences: 

• The exceedance curve presents likelihood and consequence values for a specific level of actual risk, 
in this case, risk =1. Each level of risk would have its own exceedance curve. 

• The mirroring axis is not the risk-neutral line—there is no risk-neutral line because there is no such 
thing as a risk-neutral probability distribution (see Section 4.4). Instead, the blue line is called the 
constant risk line since at every point probability x consequence = 1. 

The key takeaway is that risk scaling and risk tolerance can be related to each other by the same risk aversion 

(or risk-seeking) formula. 
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8.1.6 Appendix F: Maximizing Mitigation Value or Minimizing Post-

Mitigated (Residual) Risk 

The goal of risk management is to reduce risk to some acceptable level, for average risk and tail risk. This 

can be achieved by minimizing post-mitigated risk or by maximizing risk reduction, in both cases subject to 

constraints such as cost-benefit, affordability, etc. We might prefer maximizing risk reduction since 

mitigation actions are how we achieve risk reduction. If we minimize post-mitigation risk, we have to derive 

the mitigations associated with that level of risk, which is more cumbersome from a modeling standpoint. 

For average risk, minimizing post-mitigation risk and maximizing risk reduction are the same thing. Not 

necessarily so for tail risk. 

It turns out that minimizing post-mitigation tail risk may require a different set of mitigations than 

maximizing tail risk reduction, and that minimizing post-mitigation tail risk is the only way to guarantee 

optimal tail risk reduction. Said another way, it is possible that maximizing mitigation tail risk-benefit does 

not result in minimized post-mitigation tail risk.  

This is a surprising and unintuitive result that requires a demonstration. 

Consider a simple utility substation with two circuits in a high fire-threat area. The pre-mitigated risk 

statistics for the two circuits and the total for the substation are presented in Figure 8-23 below. The average 

risk for Circuit 1 is higher, $360 vs. $212 but the Cvar (or tail average risk) is higher for Circuit 2, $1,468 vs. 

$1,354. 
 

Pre-mitigated Risk Level Circuit 1 Circuit 2 Total 
LoRE 50% 40%   
Average risk $360 $212 $572 
Cvar @ P95th%* $1,354 $1,468 $2,113 
*Tail risk is not additive       

Figure 8-23. Summary risk statistics for two circuits. 

The utility must choose between two mitigations, one reduces LoRE by 50% for Circuit 1 and the other 

reduces LoRE by 50% for Circuit 2. The mitigation benefit of the two mitigation choices is as follows, in 

Figure 8-24. 
 

  Circuit 1 Circuit 2 
Mitigation Benefit Mitigation 1 Mitigation 2 
Higher is better     
LoRE reduction 50% 50% 
Average mitigation impact $182 $105 
Cvar @ P95th% mitigation impact $1,179 $1,121 

Figure 8-24. Comparing mitigation benefits (higher is better). 
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Based on mitigation benefit, Mitigation 1 reduces more average risk and also has more Cvar risk reduction, 

defined as the tail average of the risks mitigated. This definition of mitigation Cvar is very important as we 

will soon see. 

The post-mitigation risk, which is pre-mitigated risk minus mitigation impact, is presented in Figure 8-25. 

The total post-mitigation risk (the substation level) is shown for each of the two mitigation options. 
 

  TOTAL RISK, given choice of: 
Post Mitigation Risk Level Mitigation 1 Mitigation 2 
Lower is better     
Average risk $390 $466 
Cvar @ P95th% $1,894 $1,824 
      

Figure 8-25. Comparing post-mitigated risk (lower is better). 

For average risk, the lowest post-mitigated risk is for Mitigation 1, which agrees with the mitigation impact 

results above. Not so for Cvar: Mitigation 2 results in the lowest post-mitigation risk for tail risk.  

How can this be? Recall the definition of Cvar for mitigated risk—it is the tail average of the risks mitigated. 

This does not include the risks that remain unmitigated! It is possible to have high mitigation benefits and 

also leave the highest risks unmitigated. The Cvar for post-mitigated risks captures the tail risk of remaining 

risks directly. 

Rank Cvar of mitigation impact =/= Rank Cvar of post-mitigated risk 

However, it is possible to impute the risk impact of mitigations by calculating the difference between pre-

mitigation and post-mitigation tail risk for average risk and for tail average (Cvar) risk, which we will call 

“net mitigation benefit.”84 Net mitigation benefit is presented in Figure 8-26, and agrees with the ranking of 

mitigation impact in Figure 8-25 above. 
 

  Net Benefit 
Net Mitigation Benefit Mitigation 1 Mitigation 2 
Higher is better     
Average net mitigation benefit $182 $105 
Cvar @ P95th% net mitigation benefit $219 $289 
   

Figure 8-26. Comparing the net mitigation benefit as the difference between pre-mitigated and post-

mitigated risk (higher is better). 

 

84 One must be careful with performing any type of calculation with single numbers from tail risk as discussed in the Flaw of 

Extremes appendix, but it is justified in this specific case. 
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Rank (Cvar of pre-mitigated risk minus post-mitigated risk) = Rank Cvar of post-mitigated risk 

It is therefore recommended that optimization is defined as minimizing post-mitigated risk, and mitigation 

benefit imputed from pre-mitigated risk minus post-mitigation risk. Minimizing post-mitigated tail risk will 

not always be different than maximizing mitigation tail risk impact, but as we have shown, it is possible.  

8.1.7 Appendix G: Approaches for Setting Risk Tolerance 

Optimizing risk mitigation based on risk tolerance requires risk tolerance to be set at some level in the 

organization. That level can be set for the organization itself, for every combination of risk events and 

attributes, or somewhere in between. Figure 8-27 below shows the range of options. 

 

Figure 8-27. Range of risk tolerances required. 

Setting a tolerance means establishing the entire exceedance curve, from which average risk tolerance and 

tail risk tolerance can be calculated. 

Establishing risk tolerances for utility risk has not been attempted before and will require a process that 

includes education, debate, consensus, and a decision. Such a process will be more difficult as more 

tolerances are required. As many as 60 different tolerances could be required if set at 10 risk events x 3 

attributes x two ALARP tolerances. While requiring a lower number of tolerances would be desirable—at 

least to begin with—this doesn’t mean setting a single total risk tolerance at the enterprise level would be 

sufficient. 

Suppose a single tolerance at the utility level has been set at $100 million. In one year, there is a single risk 

event, say a cyberattack, that results in a massive power outage and $99 million of risk, mostly due to the 

monetized value of reliability. Technically, total risk is within tolerance—and yet nobody would feel that this 

was an acceptable outcome. 
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At a minimum, we would suggest starting by setting risk tolerance at the attribute level and at least for 

wildfire risk, which would require 6 tolerances: 3 attributes x 2 risk events (wildfire, and a bucket for all 

other risk events). Each additional risk event added would increase the number of tolerances by 3. For 

example, setting tolerances for 3 attributes, and wildfire, gas events, hydropower, and all others, would 

require a total of 12 tolerances (24 for ALARP). 

As the utilities and evaluators gained experience working with risk tolerance and optimization, more 

tolerances can be added as needed. 

8.2 Acronyms 

 

Term Definition 

ALARP As Low as Reasonably Practicable 

BCR Benefit-Cost Ratio 

CBA Cost-Benefit Approach 

CoRE Consequence of Risk Event 

CPUC California Public Utilities Commission 

CURTS California Utility Risk Tolerance Stakeholder 

Cvar Conditional value at risk 

ESJ Environmental and Social Justice 

EV Expected Value 

FAIR Factor Analysis of Information Risk 

GPS Global Positioning System 

GRC General Rate Case 

LoRE Likelihood of Risk Event 

LoSF Likelihood of Simultaneous Failure 

MAVF Multi-Attribute Value Function 

MPT Modern Portfolio Theory 

MS Microsoft 

PG&E Pacific Gas & Electric 

RAMP Risk Assessment and Mitigation Phase 
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Term Definition 

RDF Risk-Decision Framework 

RMAR Risk Mitigation Accountability Report 

RSE Risk Spend Efficiency 

S-MAP Safety Model Assessment Proceeding 

SCE Southern California Edison 

SDG&E San Diego Gas & Electric 

SME Subject matter expert 

SPD Safety Policy Division 

TURN The Utility Reform Network 

TWG Technical Working Group 

Var Value at risk 

WMP Wildfire Mitigation Plan 

8.3 Definitions 

 

Term Definition 

ALARP Stands for “As Low as Practicably Reasonable” and is a 
three-tiered optimization method within a cost-benefit 
analysis. 

Arithmetic of uncertainty The rules of arithmetic for summing, multiplying, or 
subtracting probability distributions, are used for calculating 
risk and for risk aggregation. 

Attribute An observable aspect of a risky situation that has value or 
reflects a utility objective such as safety or reliability. 
Changes in the levels of attributes are used to determine the 
consequences of a risk event (CoRE). The attributes in a 
cost-benefit approach should cover the reasons that a utility 
would undertake risk mitigation activities.  

Benefit The reduction in risk, as measured by the changes in 
attribute levels, which would occur when a program or set 
of activities is implemented. 
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Term Definition 

Benefit-Cost Ratio (BCR) The ratio of monetized benefits (numerator) and costs 
(denominator) calculated by dividing the dollar value of 
mitigation benefit by the mitigation cost estimate used in a 
cost-benefit analysis. 

Conditional value at risk (Cvar) A measure of tail risk, calculated as the average of risks 
above a given percentile. Also called tail average risk. 

Consequence (or Impact) The effect of the occurrence of a risk event. Consequence 
affects attributes of a cost-benefit. 

CoRE Estimated dollar value of the consequence of a risk event. 

Cost-Benefit Approach A decision-analysis tool for comparing the monetized 
benefits of a program, or set of activities, against the costs 
of the program, or set of activities, to create a measurement 
of value. 

CPUC California Public Utilities Commission 

Cross-cutting risks Risk drivers or factors that impact more than one risk area. 
An example would be a seismic event that affects the risk of 
wildfire and dam failure. 

Deterministic The use of single numbers such as averages in a model, 
without consideration of any randomness. 

Diminishing returns Occurs when the value of combining two or more 
mitigations is less than the sum of each of them 
individually. 

Driver A factor that could influence the likelihood of occurrence 
of a risk event, the consequence of a risk event, or both. A 
driver may include external events or characteristics 
inherent to the asset or system. 

Efficient Frontier The set of optimal portfolios that offer the highest 
mitigation value for a defined level of cost. 

Exceedance curve A graph that shows for specified probabilities, the level of 
CoRE that will be equaled or exceeded at each probability. 

Expected Value (EV) The average of all the values in a probability distribution. 

Factor model A type of statistical model that makes predictions based on 
factors or drivers and takes the form y = f1x1 + f2x2 +fnxn +e. 
Factor models work well with portfolios and influence 
diagrams. 
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Term Definition 

Flaw of Averages A set of systematic errors when using single numbers such 
as averages as inputs into complex models. 

Flaw of Extremes Mathematical errors that occur when extreme results such 
as 90th percentiles are added as single numbers. Related to 
the Flaw of Averages. 

Frequency The number of events generally defined per unit of time. 
(Frequency is not synonymous with probability or 
likelihood.) 

Gross disproportionality A concept in some implementations of ALARP where risks 
must be averted unless there is a gross disproportion 
between the costs and benefits of doing so. In other words, 
the BCR is weighted to favor carrying out the safety 
improvement. 

Herringbone A multi-dimensional visualization of trade-offs. 

Independent In statistics the absence of any influence or causality 
between variables. 

Inherent risk See pre-mitigated risk. 

Interrelated (interrelationship) In statistics, where the occurrence of one event influences 
the occurrence of another. The two events can directly 
influence each other or be jointly influenced by another 
event. Does not necessarily imply causation. 

Likelihood or Probability The relative possibility that an event will occur, quantified 
as a number between 0% and 100% (where 0% indicates 
impossibility and 100% indicates certainty). The higher the 
probability of an event, the more certain we are that the 
event will occur. 

Likelihood of Risk Event (LoRE) Likelihood of Risk Event 

Likelihood of simultaneous failure (LoSF) The likelihood of two or more risk events occurring at the 
same time (as in a “perfect storm”). Impossible to 
determine when risk is represented by single numbers. 

Metalog A versatile probability distribution that can replicate most 
continuous distributions without having to know the 
specific parameters of any particular distribution. 

Mitigation Measured or activity proposed or in process designed to 
reduce the impact/consequences and/or 
likelihood/probability of a risk event. 



I NC O RP O RAT IN G  R I SK  T O L ERA NC E  AN D  S I MPL E  O PT I M I ZAT I ON  IN T O T H E  RD F  

 

L E V E L  4  VE NT UR E S ,  I NC ,                    F INA L  R E PO R T  1 0/ 2 0 2 4  8 2  

Term Definition 

Mitigation value The impact on the risk of a mitigation. The difference 
between pre-mitigated risk and post-mitigated risk. 

Monetization The process of converting a risk consequence into a 
monetary unit, such as dollars. 

Monetized levels of an attribute E.g., monetized levels of safety attribute. The 
representation, in dollars, of the potential outcomes that an 
attribute is exposed to, obtained by converting from the 
natural units of the attribute levels using an appropriate 
conversion factor or function. 

Monte Carlo simulation A modeling technique that uses uncertain inputs in the form 
of probabilities and returns outputs as probability 
distributions. 

Natural unit of an attribute The way the level of an attribute is measured or expressed. 
For example, the natural unit of a safety attribute may be 
fatalities. Natural units are chosen for convenience and case 
of communication and are distinct from monetized levels of 
attributes. 

Outcome The final resolution or end result of a risk event. 

Optimization See stochastic optimization. 

Portfolios In the context of risk optimization, a collection of 
mitigations that captures interrelationships such as synergies 
and diminishing returns. By definition, mutually exclusive 
mitigations are excluded. 

Post-mitigated risk The risk that remains after mitigations are applied. Can be 
thought of as an accepted risk. 

Power law A type of probability distribution that often has a “fat tail” 
representing very low likelihoods of very high consequence, 
often catastrophic, events. 

Pre-mitigated risk The current level of risk, before any new mitigations are 
applied. 

Probability distribution The chances of different outcomes for the event. The 
probabilities of a complete distribution must add up to 
100%. 

Residual risk See post-mitigated risk. 
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Term Definition 

Risk The chance of something bad happening, often expressed 
in terms of a combination of various Outcomes of an 
adverse event and their associated probabilities. 

Risk attitude Risk attitude is a subjective description of one’s willingness 
to take on risk. Risk attitudes range from risk aversion to 
risk neutral, to risk seeking. 

Risk-averse A risk attitude where an individual is willing to pay more 
than the value of risk reduction in order to avoid the risk. It 
can be represented by a convex scaling function. 

Risk event The occurrence of risk. It can be thought of as when the 
possibility of a risk becomes a certainty, i.e., the risk occurs. 
In particular, the occurrence of a risk event changes the 
levels of some or all of the attributes of a risky situation. 

Risk neutral A risk attitude where an individual is willing to pay the exact 
amount of the value of risk reduction, no more, no less. It 
can be represented by a linear scaling function. 

Risk scaling function A function or formula that specifies an attitude towards 
different magnitudes of outcomes including capturing 
aversion to extreme outcomes or indifference over a range 
of outcomes. 

Risk seeking A risk attitude where an individual is only willing to pay less 
than the value of risk reduction to avoid a risk. It can be 
represented by a concave scaling function. 

Risk spend efficiency The ratio of a risk score for an initiative in a MAVF 
framework to the cost for that initiative. 

Risk tolerance The maximum amount of residual risk that an entity or its 
stakeholders are willing to accept after the application of 
risk control or mitigation. Risk tolerance can be influenced 
by legal or regulatory requirements. 

Risk tolerance is a stochastic function of risk attitude. It 
may be represented as an exceedance curve of acceptable 
consequence for each probability (e.g., 50%, 10%, 5%, 2%, 
1%, 0.1%, etc.). 

Sensitivity analysis Analysis and statistical tests to determine how various 
sources of uncertainty in a mathematical model contribute 
to the model’s overall uncertainty. 

Scaling function See Risk scaling function. 
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Term Definition 

Sparse Monte Carlo A subset of Monte Carlo simulation that includes the trial 
information of outcome events only, which improves 
computational efficiency for extremely low likelihood risks. 

Stochastic Another word for probability. 

Stochastic optimization Optimizing based on a probability distribution, such as 
average risk and Cvar (tail average risk)—as opposed to 
optimizing on single numbers, which is deterministic 
optimization. 

Synergy Occurs when the value from combining two or more 
mitigations is higher than the sum of the mitigations 
individually. 

Tail average risk Another term for Cvar. 

Tail risk Risk that is reflected in the tails of a probability distribution. 
Tail risk focuses on the consequences of rare events. 

Trade-offs The act of giving up something of value to gain something 
else of value expending the same level of resources. 

Tranche A logical disaggregation of a group of assets (physical or 
human) or systems into subgroups with like characteristics 
for purposes of risk assessment. 

Uncertainty The state where it is impossible to exactly describe current 
conditions or future outcomes. 

Value at risk (Var) A measure of tail risk, represented as the minimum risk at a 
given percentile.  

 

 

 


